European Journal of Forest Research

, Volume 133, Issue 5, pp 871–877 | Cite as

Relationships between the mean trees by basal area and by volume: reconciling form factors in the classic Bavarian yield and volume tables for Norway spruce

Original Paper

Abstract

The Norway spruce forests of southern Germany and Austria have been at the forefront of forestry research for well over 100 years. The 1960s were a particularly productive period that saw the development of the yield tables of Ernst Assmann and Friedrich Franz, and the form and volume tables of Reinhard Kennel. Both of these works (or the equations that underpin them) are still in common use today. Even though both sets of tables were developed concurrently in the Institute for Growth and Yield at the Munich Forest Research Institute, a cursory examination suggests they are mutually incompatible, as they appear to use different values of form factor. The discrepancy can be explained by examining the differences between the mean tree by basal area (the tree with the quadratic mean diameter) and the mean tree by volume. This difference is shown to be predictable from data contained in the yield tables, and a conversion equation is developed and tested. The results show that the two sets of tables can be considered fully compatible if we accept that the volumetric mean tree is not identical to the mean tree described in the yield tables.

Keywords

Assmann Kennel Form factor Mean diameter Yield table 

References

  1. Aguirre-Calderón OA (2013) Growth modelling of Pinus teocote Schltdl. Et Cham. in northeastern Mexico. Revista de Ciencia forestal en México 4(17):28–41Google Scholar
  2. Assmann E (1955) Die Bedeutung des “erweiterten Eichhorn’schen Gesetzes” für die Konstruktion von Fichten-Ertragstafeln. Forstwissenschaftliches Centralblatt 74:321–330CrossRefGoogle Scholar
  3. Assmann E (1959) Höhenbonität und wirkliche Ertragsleistung. Forstwissenschaftliches Centralblatt 78:1–20CrossRefGoogle Scholar
  4. Assmann E (1970) The principles of forest yield study. Pergamon press, Oxford, p 506Google Scholar
  5. Assmann E, Franz F (1963) Vorläufige Fichten-Ertragstafel für Bayern. Institut für Ertragskunde der Forstlichen Forschungsanstalt, München, p 103Google Scholar
  6. Assmann E, Franz F (1965) Vorläufige Fichten-Ertragstafel für Bayern. Forstwissenschaftliches Centralblatt 84(1/2):13–43CrossRefGoogle Scholar
  7. Berkhout AH (1920) Het meten der boomen in verband met hun aanwas. Mededelingen van de Landbouwhogeschool Wageningen, Netherlands 17, 109–225 apud Essed (1957)Google Scholar
  8. BSELF (1981) Hilfstafeln fur die Forsteinrichtung. Bayerisches Staatsministerium fur Ernahrung, Landwirtschaft und Forsten, Munchen, p 383Google Scholar
  9. Clutter JL, Bennett FA (1965) Diameter distributions in old-field slash pine plantations. Georgia Forest Research Council Reports 13Google Scholar
  10. Coble DW, Lee Y-J (2008) A new diameter distribution model for unmanaged slash pine plantations in East Texas. South J Appl For 32(2):89–94Google Scholar
  11. Condes S, Sterba H (2008) Comparing an individual tree growth model for Pinus halepensis Mill in the Spanish region of Murcia with yield tables gained from the same area. Eur J For Res 127(3):253–261CrossRefGoogle Scholar
  12. Elzhov TV, Mullen KM, Spiess AN, Bolker B (2013) minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. R Packag Version 1:1–8. http://CRAN.R-project.org/package=minpack.lm
  13. Essed FE (1957) Estimation of standing timber. H. Veenmann and Zonen, WageningenGoogle Scholar
  14. Franklin O, Moltchanova E, Kraxner F, Seidl R, Bottcher H, Rokityiansky D, Obersteiner M (2012) Large-scale forest modeling: deducing stand density from inventory data. Int J For Res 2012:934974. doi:10.1155/2012/934974
  15. Franz F (1971) Grundlagen und Verfahren standortbezogener Leistungsschätzung. Forstliche Forschungsanstalt, Forschungsbericht, MünchenGoogle Scholar
  16. Franz F (1987) Zum Aufbau eines neuzeitlichen Informationssystems für die Forstwirtschaft. Forstarchiv 58(4):131–137Google Scholar
  17. Frauendorfer R (1954) Forstliche Hilfstafeln. Schriftenreihe der forstlichen Bundes-Versuchanstalt Mariabrunn 2, p 168Google Scholar
  18. Gehrhardt E (1901) Die theoretische und praktische Bedeutung des arithmetischen Mittelstammes. Dissertation, Universität Tübingen. Keyssner’sche Hofbuchdruckerei, Meiningen, p 73. apud Assmann (1970)Google Scholar
  19. Gehrhardt E (1921) Eine neue Fichten-Ertragstafel. Allgemeine Forst-und Jagdzeitung 97:241–246Google Scholar
  20. Griess O (1966) Ertragstafeln für Fichte: Fichtenertragstafel für niedriges Ertragsnieveau Landeskammer für Land- und Forstwirtschaft in Steiermark, Graz, p 15 [The mis-spelling of ‘Ertragsniveau’ is present in the title of the original document. Marschall (1975) references it simply as ‘Fichten-Ertragstafeln für niedriges Ertragsniveau’] Google Scholar
  21. Guttenberg A (1896) Die Aufstellung von Holzmassen- und Geldertragstafeln auf Grundlage von Stammanalysen. Österreichische Vierteljahresschrift für Forstwesen 14: 203–237, 319–345. http://babel.hathitrust.org/cgi/pt?id=uc1.b3091680#view=1up;seq=8
  22. Guttenberg A (1915) Wachstum und Ertrag der Fichte im Hochgebirge. Verlag Franz Deuticke, Wien. https://archive.org/details/wachstumundertra00gutt
  23. Jandl R, Neumann M, Eckmüllner O (2007) Productivity increase in Northern Austrian Norway spruce forests due to changes in nitrogen cycling and climate. J Plant Nutr Soil Sci 170(1):157–165CrossRefGoogle Scholar
  24. Johnston DR, Bradley RT (1963) Forest management tables. Commonw For Rev 42(3):217–227Google Scholar
  25. Joosten R, Schulte A (2002) Possible effects of altered growth behaviour of Norway Spruce (Picea abies) on carbon accounting. Clim Change 55(1/2):115–129CrossRefGoogle Scholar
  26. Kennel R (1965) Die Herleitung verbesserter Formzahltafeln am Beispiel der Fichte. Berichte der Jahrestagung des Deutschen Verbandes Forstlicher, Sektion Ertragskunde, in Gießen, pp 51–57Google Scholar
  27. Kennel R (1967) Ertragskundliche Ergebnisse neuer Düngungsversuche in Kiefern-, Fichten- und Buchenbeständen Bayerns. Forstwissenschaftliches Centralblatt 86(1):13–28CrossRefGoogle Scholar
  28. Kennel R (1969) Formzahl-und Volumentafeln für Buche und Fichte. Institut für Ertragskunde der Forstlichen Forschungsanstalt, München 55 pGoogle Scholar
  29. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168Google Scholar
  30. MAF (2011) A guide to look-up tables for forestry in the Emissions Trading Scheme. Ministry of Agriculture and Forestry (New Zealand), Wellington, 39 pGoogle Scholar
  31. Marschall J (1975) Hilfstafeln für die Forsteinrichtung. Österreichischer Agrarverlag Druck—und Verlagsges, WienGoogle Scholar
  32. Mellert KH, Prietzel J, Straussberger R, Rehfuess KE, Kahle HP, Perez P, Spiecker H (2008) Relationships between long-term trends in air temperature, precipitation, nitrogen nutrition and growth of coniferous stands in Central Europe and Finland. Eur J For Res 127:507–524CrossRefGoogle Scholar
  33. Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. In: Watson GA (ed) Lecture notes in mathematics 630: numerical analysis. Springer-Verlag, Berlin, pp 105–116Google Scholar
  34. Mund M, Kummetz E, Hein M, Bauer GA, Schulze ED (2002) Growth and carbon stocks of a spruce forest chronosequence in central Europe. For Ecol Manag 171:275–296CrossRefGoogle Scholar
  35. Nishizono T, Iehara T, Kuboyama H, Fukuda M (2005) A forest biomass yield table based on an empirical model. J For Res 10(3):211–220CrossRefGoogle Scholar
  36. Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model. Springer, Berlin, 664 pGoogle Scholar
  37. Pretzsch H, Grote R, Reineking B, Rotzer T, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087PubMedCentralPubMedCrossRefGoogle Scholar
  38. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  39. Riebel F, Pelleter W (1928) Fichten-Lokalertragstafeln Bruck/M. (Eigenverl). apud Marschall (1975)Google Scholar
  40. Riebel F, Pelleter W (1929) Fichtenlokalertragstafeln für Obersteiermark (Eigenverl.), p 17. apud Griess (1966)Google Scholar
  41. Schober R (1975) Ertragstafeln wichtiger Baumarten bei verschiedener Durchforstung. J.D. Sauerländer’s Verlag, Frankfurt am MainGoogle Scholar
  42. Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31CrossRefGoogle Scholar
  43. Skovsgaard JP, Vanclay JK (2013) Forest site productivity: a review of spatial and temporal variability in natural site conditions. Forestry 86(3):305–315CrossRefGoogle Scholar
  44. Sloboda B (1984) Possibilities of mathematically predicting timber production in commercial forests. Bull Nagoya Univ For 7:261–279Google Scholar
  45. Smith VG (2010) Trends in growing space efficiency of four boreal forest species based on yield table data. Can J For Res 40(11):2215–2222CrossRefGoogle Scholar
  46. Speidel E (1893) Beitrage zu den Wuchsgesetzen des Hochwaldes. Verlag der H. Laupp’schen Buchhandlung, Tubingen, 116 pGoogle Scholar
  47. Spiecker H (1991) Liming, nitrogen and phosphorus fertilization and the annual volume increment of Norway spruce stands on long-term permanent plots in Southwestern Germany. Fertil Res 27(1):87–93CrossRefGoogle Scholar
  48. Sterba H (1976) Die Funktionsschemata der vier Fichtenertragstafeln. Centralblatt für das gesamte Forstwesen 93(2):102–112Google Scholar
  49. Straub C, Weinacker H, Koch B (2010) A comparison of different methods for forest resource estimation using information from airborne laser scanning and CIR orthophotos. Eur J For Res 129(6):1069–1080CrossRefGoogle Scholar
  50. Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, Wallingford, UKGoogle Scholar
  51. Vanclay JK, Baynes JS (2005) Constructing a Yield Table for Smallholder Forests. In: Suh J, Harrison SR, Herbohn JL, Mangaong EO, Vanclay J (eds) ACIAR Smallholder Forestry Project: improving financial returns to smallholder tree farmers in the Philippines. Ormoc City, Philippines, pp 107–110Google Scholar
  52. Vanselow K (1951) Fichtenertragstafeln für Südbayern. Untersuchungen über Zuwachs, Ertrag, Stammformen und Struktur reiner Fichtenbestände in Südbayern. Forstwissenschaftliches Centralblatt 70(7):409–445CrossRefGoogle Scholar
  53. Wiedemann E (1936) Die Fichte 1936. Mitteilungen aus Forstwirtschaft und Forstwissenschaft 7:1–62Google Scholar
  54. Wiedemann E (1937a) Die Fichte 1936. Mitteilungen aus Forstwirtschaft und Forstwissenschaft 8:103–248 apud Spiecker (1991)Google Scholar
  55. Wiedemann E (1937b) Die Fichte 1936: erweiterte Fortfuehrung der Berichte von Geheimrat Schwappach ueber die preussischen Fichtenversuchsflaechen. M. & H, Schaper, Hannover, 248 p [Inaccurate pagination, copied directly from Wiedemann’s (1936; 1937a) journal articles, see http://agris.fao.org/agris-search/search/display.do?f=2013/US/US2013021060002106.xml;US201300210604]
  56. Wiedemann E (1938) Ertragstafeln für Buche (1931) Fichte (1936) Douglasie (1937). M & H Schaper, Hannover, 31 pGoogle Scholar
  57. Wiedemann E (1942) Eine Korrektur an der Fichtenertragstafel von 1936. Mitteilungen aus Forstwirtschaft und Forstwissenschaft 13(3):287–294Google Scholar
  58. Würth G, Häger C, Kohlmaier GH (1998) The Frankfurt Biosphere Model (FBM): regional validation using German forest yield tables and inventory data and extrapolation to a 2 × CO2 Climate. In: Kohlmaier GH, Weber M, Houghton RA (eds) Carbon dioxide mitigation in forestry and wood industry. Springer, Berlin, pp 293–321CrossRefGoogle Scholar
  59. Wutzler T, Mund M (2007) Modelling mean above and below ground litter production based on yield tables. Silva Fenn 41(3):559–574CrossRefGoogle Scholar
  60. Zhou X, Peng C, Dang QL, Chen J, Parton S (2005) Predicting forest growth and yield in northeastern Ontario using the process-based model of TRIPLEX1.0. Can J For Res 35:2268–2280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia

Personalised recommendations