European Journal of Forest Research

, Volume 133, Issue 5, pp 783–792 | Cite as

Detecting trends in diameter growth of Norway spruce on long-term forest research plots using linear mixed-effects models

  • Chaofang Yue
  • Hans-Peter Kahle
  • Ulrich Kohnle
  • Qing Zhang
  • Xingang Kang
Original Paper

Abstract

The objective of the study was to introduce a simultaneous approach to extracting growth trends from diameter increment series by combining tree- and stand-level information in the framework of mixed-effects modeling. The model results are compared with those of the sequential modeling approach according to Yue et al. Can J For Res 41:1577–1589, (2011). Comprehensive data from periodically repeated tree and stand measurements on 113 Norway spruce long-term forest research stands distributed throughout southwestern Germany as well as annually resolved diameter growth data from stem analysis of 581 sample trees are used for model parameterization. Results provide clear evidence for distinct temporal variation due to environment-related effects after accounting for tree- and stand-level effects on diameter growth of Norway spruce over the past 136 years, with especially high growth levels during the last four decades. Most remarkable is the considerable increase in diameter growth rates following the 1947–1952 growth depression. From the early 1960s onwards, growth rates fluctuated on an elevated level until most recent years. Model comparison reveals that results of the sequential and simultaneous modeling approaches are similar with respect to the course of the time-specific environmental effects on growth. We conclude that the proposed simultaneous modeling approach has the advantages of extracting growth trends at a higher level of precision and being the more parsimonious modeling option.

Keywords

Diameter increment Growth trend Decomposition model Simultaneous modeling Environmental change 

References

  1. Abetz P, Mitscherlich G (1969) Überlegungen zur Planung von Bestandesbehandlungsversuchen. Allgemeine Forst- und Jagdzeitung 140:175–179Google Scholar
  2. Aldinger E, Hübner W, Michiels HG, Mühlhäusser G, Schreiber M, Wiebel M (1998) Überarbeitung der standortkundlichen regionalen Gliederung im Südwestdeutschen Standortskundlichen Verfahren. Mitteilungen des Vereins für Forstliche Standortskartierung und Forstpflanzenzüchtung 39:5–71Google Scholar
  3. Assmann E (1961) Waldertragskunde: Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. Bayerischer Landwirtschaftsverlag, München, p 490Google Scholar
  4. Assmann E, Franz F (1963) Vorläufige Fichten-Ertragstafel für Bayern. Institut für Ertragskunde der Forstlichen Forschungsanstalt München, München, p 104Google Scholar
  5. Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59:390–412CrossRefGoogle Scholar
  6. Bates DM (2005) Fitting linear mixed models in R. R News 5:27–30Google Scholar
  7. Bellassen V, Viovy N, Luyssaert S, Le Maire G, Schelhaas MJ, Ciais P (2011) Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob Change Biol 17:3274–3292CrossRefGoogle Scholar
  8. Bontemps JD, Hervé JC, Dhôte JF (2009) Long-term changes in forest productivity: a consistent assessment in even-aged stands. For Sci 55:549–564Google Scholar
  9. Bontemps JD, Hervé JC, Leban JM, Dhôte JF (2011) Nitrogen footprint in a long-term observation of forest growth over the twentieth century. Trees Struct Funct 25:237–251CrossRefGoogle Scholar
  10. Bowman DMJS, Brienen RJW, Gloor E, Phillips OL, Prior LD (2013) Detecting trends in tree growth: not so simple. Trends Plant Sci 18:11–17PubMedCrossRefGoogle Scholar
  11. Briffa KR, Melvin TM (2011) A closer look at regional curve standardization of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Diaz HF, Swetnam TW (eds.) Dendroclimatology: progress and prospects. Springer: Developments in Paleoenvironmental Research 11:113–145Google Scholar
  12. Charru M, Seynave I, Morneau F, Bontemps JD (2010) Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. For Ecol Manag 260:864–874CrossRefGoogle Scholar
  13. Cook ER (1990) A conceptual linear aggregate model for tree rings. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. International Institute for Applied Systems Analysis, Kluwer Academic Publishers, Dordrecht, pp 98–104CrossRefGoogle Scholar
  14. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. The Holocene 5:229–237CrossRefGoogle Scholar
  15. Dhôte JF, Hervé JC (2000) Productivity changes in four sessile oak forests since 1930: a stand level approach. Ann For Sci 57:651–680CrossRefGoogle Scholar
  16. Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph, p 462Google Scholar
  17. Kahle HP, Karjalainen T, Schuck A, Ågren GI, Kellomäki S, Mellert KH, Prietzel J, Rehfuess KE, Spiecker H (eds) (2008) Causes and consequences of forest growth trends in Europe: Results of the recognition project. Brill, Leiden, European Forest Institute Research Report 21:261Google Scholar
  18. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974PubMedCrossRefGoogle Scholar
  19. Laubhann D, Sterba H, Reinds GJ, de Vries W (2009) The impact of atmospheric deposition and climate on forest growth in European monitoring plots: an individual tree growth model. For Ecol Manag 258:1751–1761CrossRefGoogle Scholar
  20. Magnussen S, Penner M (1996) Recovering time trends in dominant height from stem analysis. Can J For Res 26:9–22CrossRefGoogle Scholar
  21. McMahon SM, Parker GG, Miller DR (2010) Evidence for a recent increase in forest growth. PNAS 107:3611–3615PubMedCentralPubMedCrossRefGoogle Scholar
  22. Mellert KH, Prietzel J, Straussberger R, Rehfuess KE, Kahle HP, Perez P, Spiecker H (2008) Relationships between long-term trends in air temperature, precipitation, nitrogen nutrition and growth of coniferous stands in Central Europe and Finland. Eur J Forest Res 127:507–524CrossRefGoogle Scholar
  23. Melvin TM, Briffa KR (2008) A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26:71–86CrossRefGoogle Scholar
  24. Moosmayer HU, Schöpfer W, Kublin E, Tuch U (2003) Standörtliche Einflüsse auf Wachstumsänderungen der Fichte in Baden-Württemberg. Mitteilungen des Vereins für Forstliche Standortskunde und Forstpflanzenzüchtung 42:23–30 Google Scholar
  25. Nagel J, Spellmann H, Pretzsch H (2012) Zum Informationspotenzial langfristiger forstlicher Versuchsflächen und periodischer Waldinventuren für die waldwachstumskundliche Forschung. Allgemeine Forst- und Jagdzeitung 183:111–116Google Scholar
  26. Nothdurft A, Wolf T, Ringeler A, Böhner J, Saborowski J (2012) Spatio-temporal prediction of site index based on forest inventories and climate change scenarios. For Ecol Manag 279:97–111CrossRefGoogle Scholar
  27. Oehmichen K, Demant B, Dunger K, Grüneberg E, Hennig P, Kroiher F, Neubauer M, Polley H, Riedel T, Rock J, Schwitzgebel F, Stürmer W, Wellbrock N, Ziche D, Bolte A (2011) Inventurstudie 2008 und Treibhausgasinventar Wald. Landbauforschung 343:102 + AppendixGoogle Scholar
  28. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS: statistics and computing series. Springer, New York, p 528CrossRefGoogle Scholar
  29. Pretzsch H, Utschig H (2000) Wachstumstrends der Fichte in Bayern. Mitteilungen aus der Bayerischen Staatsforstverwaltung 49:170Google Scholar
  30. Rautiainen A, Saikku L, Kauppi PE (2010) Carbon gains and recovery from degradation of forest biomass in European Union during 1990–2005. For Ecol Manag 259:1232–1238CrossRefGoogle Scholar
  31. Biritz GmbH Digitalpositiometer System Johann Typ 2. Retrieved Jan 14, 2013. http://www.biritz.at/messgeräte/digitalpositiometerGoogle Scholar
  32. Schöpfer W, Hradetzky J, Kublin E (1994) Wachstumsänderungen der Fichte in Baden-Württemberg. Forst und Holz 49:633–644Google Scholar
  33. Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth trends in European forests—studies from 12 countries. Springer, Berlin, European Forest Institute Research Report 5:372Google Scholar
  34. Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Fernandez PG, Hildingsson A, de Vries W (2009) Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. For Ecol Manag 258:1735–1750CrossRefGoogle Scholar
  35. Tojic K (2010) Einordnung des Wachstums von Buche (Fagus sylvatica L.) und Fichte (Picea abies [L.] Karst.) im Zeitraum zwischen den zwei Bundeswaldinventuren (1987 und 2002) in den längerfristigen Kontext. Dissertation Albert-Ludwigs-Universität Freiburg:65 + AppendixGoogle Scholar
  36. Untheim H (1996) Zur Veränderung der Produktivität von Waldstandorten: Untersuchungen zum Höhen- und Volumenwachstum von Fichte (Picea abies [L.] Karst.) und Buche (Fagus sylvatica L.) auf Standorteinheiten der Ostalb und des Flächenschwarzwaldes. Mitteilungen FVA Baden-Württemberg 198: 239 + AppendixGoogle Scholar
  37. Wamelink GWW, Wieggers HJJ, Reinds GJ, Kros J, Mol-Dijkstra JP, van Oijen M, de Vries W (2009) Modelling impacts of changes in carbon dioxide concentration, climate and nitrogen deposition on carbon sequestration by European forests and forest soils. For Ecol Manag 258:1794–1805CrossRefGoogle Scholar
  38. Yue C, Kohnle U, Hanewinkel M, Klädtke J (2011) Extracting environmentally driven growth trends from diameter increment series based on a multiplicative decomposition model. Can J For Res 41:1577–1589CrossRefGoogle Scholar
  39. Yue C, Kohnle U, Kahle HP, Klädtke J (2012) Exploiting irregular measurement intervals for the analysis of growth trends of stand basal area increments: a composite model approach. For Ecol Manag 263:216–228CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chaofang Yue
    • 1
  • Hans-Peter Kahle
    • 2
  • Ulrich Kohnle
    • 1
  • Qing Zhang
    • 3
  • Xingang Kang
    • 4
  1. 1.Forest Research Institute of Baden-WürttembergFreiburgGermany
  2. 2.Chair of Forest GrowthAlbert-Ludwigs-University FreiburgFreiburgGermany
  3. 3.Department of Mathematics, College of ScienceBeijing Forestry UniversityBeijingChina
  4. 4.Department of Forest Management, College of Forest ScienceBeijing Forestry UniversityBeijingChina

Personalised recommendations