European Journal of Forest Research

, Volume 133, Issue 3, pp 501–510 | Cite as

Forest self-regeneration following clear-felling of dieback-affected Fraxinus excelsior: focus on ash

  • Vaidotas LygisEmail author
  • Remigijus Bakys
  • Alma Gustiene
  • Daiva Burokiene
  • Antanas Matelis
  • Rimvydas Vasaitis
Original Paper


Due to the dieback caused by invasive fungus Hymenoscyphus pseudoalbidus, ash is threatened in many regions of Europe. In order to predict the situation with ash ecosystems, it is important to examine forest regeneration in areas formerly dominated by ash with long disease history and known management. The main aim of the present study was, therefore, to evaluate forest self-regeneration following clear-felling of ash dieback-devastated stands, focusing on ash. In Lithuania, during 2011, a forest regeneration inventory was performed on twenty clear-cuts, initially dominated by stands of ash, but severely damaged by the dieback caused by H. pseudoalbidus and clear-felled 1–10 years previously. In subsequent forest regeneration, grey alder and birch dominated. Ash regeneration was scarce, and its proportion decreased from 40–100 % in pre-dieback stands to 0–21 % in current stands. Of all observed ash trees (n = 775), 53.9 % were diseased, 16.8 % were dead, and only 29.3 % were visually healthy. Moreover, ash was among the slowest growing species, while grey alder, aspen and birch were the fastest. The regeneration and health condition of ash in forests, where previous to the dieback ash was dominant, demonstrated a sharp decrease in occurrence of this species and a clear shift in species composition towards grey alder and birch.


Common ash Forest succession Hymenoscyphus pseudoalbidus (anamorph Chalara fraxineaNatural regeneration Sanitary clear-felling 



This work was supported by the Nordic Forest Cooperation Committee (SNS) [project grant number SNS-109]. Authors are grateful to colleagues from the Lithuanian State Forest Service, staff of Biržai and Raseiniai State Forest Enterprises for their assistance in finding suitable research sites. Special thanks should also be addressed to Dr. Michelle Cleary for professional language corrections.

Conflict of interest

None declared.


  1. Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann Math Stat 23:193–212CrossRefGoogle Scholar
  2. Anonymous (2001) Lietuvos miškų ūkio statistika [Lithuanian statistical yearbook of forestry]. L.R. Aplinkos ministerija, Valstybinė miškų tarnyba. Lututė, KaunasGoogle Scholar
  3. Anonymous (2008) Miško atkūrimo ir įveisimo nuostatai [Regulations on Reforestation and Afforestation]. Commandment of the Minister of Environment of the Republic of Lithuania. Accessed 12 Dec 2013
  4. Anonymous (2012) Lietuvos miškų ūkio statistika [Lithuanian statistical yearbook of forestry]. L.R. Aplinkos ministerija, Valstybinė miškų tarnyba. Lututė, KaunasGoogle Scholar
  5. Bakys R, Vasaitis R, Barklund P, Ihrmark K, Stenlid J (2009) Investigations concerning the role of Chalara fraxinea in declining Fraxinus excelsior. Plant Pathol 58:284–292CrossRefGoogle Scholar
  6. Bakys R, Vasiliauskas A, Ihrmark K, Stenlid J, Menkis A, Vasaitis R (2011) Root rot, associated fungi and their impact on health condition of declining Fraxinus excelsior stands in Lithuania. Scand J For Res 26:128–135CrossRefGoogle Scholar
  7. Čiuplys R (2001) Phytosociological characteristics of Lithuanian forests dominated by Fraxinus excelsior. Bot Lith 7(1):3–25Google Scholar
  8. Dobrowolska D, Hein S, Oosterbaan A, Wagner S, Clark J, Skovsgaard JP (2011) A review of European ash (Fraxinus excelsior L.): implications for silviculture. Forestry 84:133–148CrossRefGoogle Scholar
  9. Douglas JE, Swank WT (1976) Multiple use in southern Appalachian hardwoods—a 10 year case history. In: Proceedings of the 16th international union of forestry research organizations world congress. University of Oslo Congress Services, Oslo, Norway, pp 425–436Google Scholar
  10. Fowler J, Cohen L, Jarvis P (1998) Practical statistics for field biology. Wiley, New YorkGoogle Scholar
  11. FRAXIGEN (2005) Ash species in Europe: biological characteristics and practical guidelines for sustainable use. Oxford Forestry Institute, University of Oxford, OxfordGoogle Scholar
  12. Gustienė A (2010) Grybo Chalara fraxinea reikšmė uosių džiūties procese [Importance of fungus Chalara fraxinea in the process of ash dieback]. Mūsų Girios 11:18–19Google Scholar
  13. Husson C, Scala B, Cael O, Frey P, Feau N, Ioos R, Marçais B (2011) Chalara fraxinea is an invasive pathogen in France. Eur J Plant Pathol 130:311–324CrossRefGoogle Scholar
  14. Huth F, Wagner S (2006) Gap structure and establishment of Silver birch regeneration (Betula pendula Roth.) in Norway spruce stands (Picea abies L. Karst.). For Ecol Manag 229:314–324CrossRefGoogle Scholar
  15. Juodvalkis A, Vasiliauskas A (2002) Lietuvos uosynų džiūvimo apimtys ir jas lemiantys veiksniai [The extent and possible causes of dieback of ash stands in Lithuania]. LŽŪU Mokslo Darbai. Biomedicinos Mokslai 56:17–22Google Scholar
  16. Karazija S (1988) Lietuvos miškų tipai [Forest site types in Lithuania]. Mokslas Publishers, VilniusGoogle Scholar
  17. Karlsson M (2001) Natural regeneration of broadleaved tree species in southern Sweden. Dissertation, Swedish University of Agricultural Sciences, AlnarpGoogle Scholar
  18. Kerr G (2004) The growth and form of ash (Fraxinus excelsior) in mixture with cherry (Prunus avium), oak (Quercus petraea and Quercus robur), and beech (Fagus sylvatica). Can J For Res 34:2340–2350CrossRefGoogle Scholar
  19. Kirisits T, Kritsch P, Kräutler K, Matlakova M, Halmschlager E (2012) Ash dieback associated with Hymenoscyphus pseudoalbidus in forest nurseries in Austria. (Extended abstract). J Agr Rural Dev 4(9):230–235Google Scholar
  20. Kjaer ED, McKinney LV, Nielsen LR, Hansen LN, Hansen JK (2012) Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evol Appl 5(3):219–228PubMedCentralCrossRefGoogle Scholar
  21. Kowalski T, Holdenrieder O (2009) Pathogenicity of Chalara fraxinea. For Pathol 39:1–7CrossRefGoogle Scholar
  22. Lygis V, Vasiliauskas R, Larsson K-H, Stenlid J (2005) Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scand J For Res 20:337–346CrossRefGoogle Scholar
  23. McKinney LV, Nielsen LR, Hansen JK, Kjaer D (2011) Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): an emerging infectious disease. Heredity 106:788–797PubMedCentralPubMedCrossRefGoogle Scholar
  24. Morash R, Freedman B (1983) Seedbanks in several recently clear-cut and mature hardwood forests in Nova Scotia. Proc N S Inst Sci 33:85–94Google Scholar
  25. Narbutas K (1975) Lietuvos TSR uosynų tipai ir struktūra bei priemonės jiems atkurti ir produktyvumui pakelti [Types of ash stands in Lithuanian SSR and measures for their restoration and productivity improvement]. Dissertation, Lithuanian Forest Research Institute, KaunasGoogle Scholar
  26. Pautasso M, Aas G, Queloz V, Holderieder O (2013) European ash (Fraxinus excelsior)—a conservation biology challenge. Biol Conserv 158:37–49CrossRefGoogle Scholar
  27. Pihlgren A, Hallingback T, Aronsson M, Dahlberg A, Edqvist M, Johansson G, Krikorev M, Thor G (2010) Var femte växt och svamp är med på nya rödlistan [The new Swedish Red List 2010]. Svensk Bot Tidskrift 104:210–226Google Scholar
  28. Pliūra A, Heuertz M (2003) EUFORGEN Technical guidelines for genetic conservation and use for common ash (Fraxinus excelsior). International Plant Genetic Resources Institute, RomeGoogle Scholar
  29. Pliūra A, Lygis V, Suchockas V, Bartkevičius E (2011) Performance of twenty four European Fraxinus excelsior populations in three Lithuanian progeny trials with a special emphasis on resistance to Chalara fraxinea. Balt For 17:17–34Google Scholar
  30. Queloz V, Grünig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O (2010) Cryptic speciation in Hymenoscyphus albidus. For Pathol 41:133–142CrossRefGoogle Scholar
  31. Riepšas E (2009) Pažeistų uosynų atsikūrimo/atkūrimo būklė ir taikytinos priemonės [Regeneration of damaged common ash stands and recommended measures]. Mūsų Girios 10:18–19Google Scholar
  32. Stener LG (2013) Clonal differences in susceptibility to the dieback of Fraxinus excelsior in southern Sweden. Scand J For Res 28:205–216CrossRefGoogle Scholar
  33. Stenlid J, Oliva J, Boberg JB, Hopkins AJ (2011) Emerging diseases in European forest ecosystems and responses in society. Forests 2:486–504CrossRefGoogle Scholar
  34. Stipes RJ, Campana RJ (1981) Compendium of elm diseases. American Phytopathological Society, St. Paul, MNGoogle Scholar
  35. Tabari KM, Lust N (1999) Monitoring of natural regeneration in mixed deciduous forest. Silva Gandavensis 65:58–71Google Scholar
  36. Tapper PG (1992) Demography of persistent juveniles in Fraxinus excelsior. Ecography 15:385–392CrossRefGoogle Scholar
  37. Tapper PG (1993) The replacement of Alnus glutinosa by Fraxinus excelsior during succession related to regenerative difference. Ecography 16(3):212–218CrossRefGoogle Scholar
  38. Timmermann V, Børja I, Hietala AM, Kirisits T, Solheim H (2011) Ash dieback: pathogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway. EPPO Bull 41:14–20CrossRefGoogle Scholar
  39. Vasiliauskas R, Bakys R, Lygis V, Barklund P, Ihrmark K, Stenlid J (2006) Fungi associated with crown dieback of Fraxinus excelsior. In: Oszako T, Woodward S (eds) Possible limitation of dieback phenomena in broadleaved stands. Forest Research Institute, Warsaw, pp 45–53Google Scholar
  40. Wagner S (1990) Zu: Vereschung—Problem oder Chance? [To: “Fraxinisation—a problem or an opportunity”?]. Allg Forstzeitschrift 32:806–807Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Vaidotas Lygis
    • 1
    Email author
  • Remigijus Bakys
    • 2
  • Alma Gustiene
    • 2
  • Daiva Burokiene
    • 1
  • Antanas Matelis
    • 1
  • Rimvydas Vasaitis
    • 3
  1. 1.Laboratory of Phytopathogenic MicroorganismsInstitute of Botany of Nature Research CentreVilniusLithuania
  2. 2.State Forest ServiceKaunasLithuania
  3. 3.Department of Forest Mycology and Plant Pathology, Uppsala BioCenterSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations