European Journal of Forest Research

, Volume 133, Issue 3, pp 491–500 | Cite as

Canopy transpiration of a Pinus canariensis forest at the tree line: implications for its distribution under predicted climate warming

  • Patricia Brito
  • Jose R. Lorenzo
  • Águeda Mª. González-Rodríguez
  • Domingo Morales
  • Gerhard Wieser
  • Maria S. Jimenez
Original Paper


Canopy transpiration (Ec) of a 50-year-old Pinus canariensis Chr. Sm. Ex DC. stand at tree line in Tenerife, Canary Islands, was estimated continuously throughout a year from March 1, 2008, to February 28, 2009, by means of xylem sap flow measurements. Ec varied markedly throughout the entire year generally following the seasonal trends in soil water availability and varied between 0.89 mm day−1 under the conditions of non-limiting soil water availability and close to zero under soil drought. This is because canopy conductance declined significantly with increasing evaporative demand and thus significantly reduced tree water loss, and this decrease was more pronounced during the soil drought. Total annual Ec was 79.6 mm, which is significantly below the values estimated for other Mediterranean forest ecosystems and even 70 % lower than the value estimated for a P. canariensis forest at 1,650 m a.s.l. where the soil water content was higher than at the tree line site. Therefore, these results highlighted the importance of drought stress in tree line ecotone and should be taken more into account in semiarid tree lines.


Canary Islands pine Tree line Soil water stress Canopy transpiration Climate change 


  1. Aboal JR, Jimenéz MS, Morales D, Gil P (2000) Effects of thinning on through fall in Canary Islands pine forest—the role of fog. J Hydrol 238:218–230CrossRefGoogle Scholar
  2. Arbelo CD, Rodríguez A, Sánchez J, Notario JS, Recatalá L, Mora JL, Guerra JA, Armas CM (2009) Caracterización en Entorno SIG de los Suelos del Parque Nacional del Teide. Dinámica de Nutrientes y Carbono en los Suelos. Departamento de Edafología y Geología, Universidad de La Laguna. Proyectos de investigación en parques nacionales: 2005–2008.
  3. Badalotti A, Anfodillo T, Grace J (2000) Evidence of osmoregulation in Larix decidua at Alpine treeline and comparative responses to water availability of two co- occurring evergreen species. Ann For Sci 57:623–633CrossRefGoogle Scholar
  4. Bates BC, Kundzewicz W, Wu S Palutikof JP (2008) Climate change and water. In: Technical paper VI of the Intergovernmental panel on climate change. IPCC Secretariat, Geneva, p 210Google Scholar
  5. Berbigier P, Bonnefond JM, Mellmann P (2001) CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agric For Meteorol 108:183–197CrossRefGoogle Scholar
  6. Blume H-P, Brümmer GW, Horn R, Kandeler E, Kögl-Knabler I, Kretzschmar R, Stahr K, Wilke B-M (2010) Scheffer/Schachtchabel: Lehrbuch der Bodenkunde. Spektrum Akademischer, HeidelbergCrossRefGoogle Scholar
  7. Borghetti M, Cinnirella S, Magani S, Sarracín A (1998) Impact of long-term drought on xylem embolism and growth in Pinus halepensis. Trees 12:187–195Google Scholar
  8. Breda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306PubMedCrossRefGoogle Scholar
  9. Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi:10.1051/forest:2006042 CrossRefGoogle Scholar
  10. Brito P, Wieser G, Morales D, Jiménez MS (2010) Spatial and seasonal variations in stem CO2 efflux of Pinus canariensis at their upper distribution limit. Trees Struct Funct 24:523–531CrossRefGoogle Scholar
  11. Brito P, Jiménez MS, Morales D, Wieser G (2013) Assessment of ecosystem CO2 efflux and its components in a Pinus canariensis forest at the treeline. Trees Struct Funct. doi:10.1007/s00468-013-0851-7 Google Scholar
  12. Čermák J, Kucera K (1990) Scaling up transpiration data between trees, stand and watersheds. Silva Carrel 15:171–178Google Scholar
  13. Čermák J, Deml M, Penka M (1973) A new method of sap flow rate determination in trees. Biol Plantarum 15:171–178. doi:10.1007/BF02922390 CrossRefGoogle Scholar
  14. Čermák J, Uleha J, Kucera J, Penka M (1982) Sap flow rate and transpiration dynamics in the full grown oak (Quercus robur L.) in floodplain forest exposed to seasonal floods as related to potential evapotranspiration and tree dimensions. Biol Plant 24:446–460CrossRefGoogle Scholar
  15. Čermák J, Cienciala E, Kucera J, Hällgren JE (1992) Radial velocity profiles of water flow in trunks of Norway spruce and oak and the response of oak to severing. Tree Physiol 10:367–380PubMedCrossRefGoogle Scholar
  16. Čermák J, Kučera J, Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees Struct Funct 18:529–546. doi:10.1007/s00468-004-0339-6 CrossRefGoogle Scholar
  17. Chirino E, Bellot J, Sánchez JR (2011) Daily sap flow rate as an indicator of drought avoidance mechanisms in five Mediterranean perennial species in semi-arid southeastern Spain. Trees 25:593–606. doi:10.1007/s00468-010-0536-4 CrossRefGoogle Scholar
  18. Climent J, Chamber MR, Gil L, Pardos JA (2003) Vertical heartwood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. For Ecol Manag 174:203–211CrossRefGoogle Scholar
  19. Climent J, Lopez R, Gonzalez S, Gil L (2007) El pino canario (Pinus canariensis), una especie singular. Ecosistemas 16:80–89Google Scholar
  20. David TS, Henriques MO, Kurz-Besson C, Numes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC, David JS (2007) Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803PubMedCrossRefGoogle Scholar
  21. De Luque AL (2011) Cualificación y homogenización de las series climáticas mensuales de precipitación de Canarias. Estimación de tendencias de la precipitación. Memoria explicativa de resultados. Informe técnico proyecto climaimpacto (MAC/3/C159) del programa de cooperación transnacional Madeira–Azores–Canarias 2007–2013Google Scholar
  22. Du S, Wang YL, Kume T, Zhang JG, Otsuki K, Yamanaka N, Liu GB (2011) Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agric Forest Meteorol 15:1–10. doi:10.1016/j.agrformet.2010.08.011 CrossRefGoogle Scholar
  23. Dulamsuren C, Hauck M, Bader M, Oyungerel S, Dalaikhuu O, Nyambayar S, Leuschner C (2009) The different strategies of Pinus sylvestris and Larix sibirica to deal with summer drought in a northern Mongolian forest-steppe ecotone suggest a future superiority of pine in a warming climate. Can J For Res 39:2520–2528. doi:10.1139/X09-156 CrossRefGoogle Scholar
  24. Epron D, Dryer E (1978) Long term effects of drought on photosynthesis of adult oak trees [Quercus petrea (Mat.) Liebl. and Quercus robur L.] in a natural stand. New Phytol 125:381–389CrossRefGoogle Scholar
  25. Ewers BE, Oren R, Albaugh TJ, Dougherty PM (1999) Carry-over effects of water and nutrient supply on water use of Pinus taeda. Ecol Appl 9:513–525CrossRefGoogle Scholar
  26. FAO (2007) World reference base for soil resources. FAO, ISRIC, ISSS, RomaGoogle Scholar
  27. Fernández-Palacios JM, de Nicolás JP (1995) Altitudinal pattern of vegetation variation on Tenerife. J Veg Sci 6:183–190CrossRefGoogle Scholar
  28. Ford CR, Mcguire A, Mitchell RJ, Teskey RO (2004) Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Tree Physiol 24:241–249PubMedCrossRefGoogle Scholar
  29. Gartner K, Nadezhdina N, Englisch M, Čermák J, Leitgeb E (2009) Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. For Ecol Manag 258:590–599CrossRefGoogle Scholar
  30. Gazal R, Scott R, Goodrich D, Williams D (2006) Controls on transpiration in a semiarid riparian cottonwood forest. Agric For Meteorol 137:56–67. doi:10.1016/j.agrformet.2006.03.02 CrossRefGoogle Scholar
  31. Gieger T, Leuschner C (2004) Altitudinal change in needle water relations of Pinus canariensis and possible evidence of a drought-induced alpine timberline on Mt. Teide, Tenerife. Flora 199:100–109CrossRefGoogle Scholar
  32. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734 CrossRefGoogle Scholar
  33. Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–319PubMedCrossRefGoogle Scholar
  34. Granier A, Huc R, Barigah ST (1996) Transpiration of natural rain forest and its dependence on climatic factors. Agric For Meteorol 78:19–29CrossRefGoogle Scholar
  35. Granier A, Loustau D, Breda N (2000) A generic model for forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann For Sci 57:755–765CrossRefGoogle Scholar
  36. Granier A, Reichstein M, Breda N, Janssens IA, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Köstner B, Lagergren F, Lindroth A, Longdoz B, Loustau B, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Pfeiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala T, Wang Q (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year 2003. Agric For Meteorol 143:123–145CrossRefGoogle Scholar
  37. Gruber A, Wieser G, Oberhuber W (2010) Opinion paper: effects of simulated soil temperature on stem diameter increment of Pinus cembra at the alpine treeline: a new approach based on root zone roofing. Eur J For Res 129:141–144PubMedCentralPubMedCrossRefGoogle Scholar
  38. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 10:1040–1049. doi:10.1111/j.1461-0248.2009.01355.x CrossRefGoogle Scholar
  39. Hogg EH, Hurdle PA (1997) Sap flow in trembling aspen: implications for stomatal responses to vapour pressure deficit. Tree Physiol 17:501–509PubMedCrossRefGoogle Scholar
  40. Hölscher D, Koch O, Korn S, Leuschner C (2005) Sap flux of five co-occurring tree species in a temperate broad-leaved forest during seasonal soil drought. Trees Struct Funct 19:628–637CrossRefGoogle Scholar
  41. IPCC: Intergovernmental Panel on Climate Change (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, 996 ppGoogle Scholar
  42. Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49CrossRefGoogle Scholar
  43. Köcher P, Gebauer T, Horna V, Leuschner C (2009) Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Ann For Sci 66:101–112. doi:10.1051/forest/2008076 CrossRefGoogle Scholar
  44. Köhler L, Gieger T, Leuscher C (2006) Altitudinal change in soil and foliar nutrient concentrations and in microclimate across the tree line on the subtropical island mountain Mt. Teide (Canary Islands). Flora 201:202–214CrossRefGoogle Scholar
  45. Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459CrossRefGoogle Scholar
  46. Körner C (2003) Alpine plantlife- Functional Plant Ecology of High Mountain Ecosystems, 2nd edn. Springer, BerlinGoogle Scholar
  47. Körner C (2012) Alpine treelines. Functional ecology of the global high elevation tree limits. Springer, BaselGoogle Scholar
  48. Köstner BMM, Schuklze E-D, Kelliher FM, Hollonger DY, Byers JN, Hunt JE, McSeventy TM, Meserth R, Weit PL (1992) Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of sap flow and eddy correlation measurements. Oecologia 91:350–359CrossRefGoogle Scholar
  49. Köstner B, Granier A, Cermak J (1998) Sapflow measurements in forest stands—methods and uncertainties. Ann For Sci 55:13–27CrossRefGoogle Scholar
  50. Kucerova A, Cermak J, Nedezhdin N, Pokorny J (2010) Transpiration of Pinus rotundata on a wooded peat bog in central Europe. Trees 24:919–930CrossRefGoogle Scholar
  51. Larcher W (2003) Physiological plant ecology, 4th edn. Springer, BerlinCrossRefGoogle Scholar
  52. Leo M, Oberhuber W, Schuster R, Grams TEE, Matyssek R, Wieser G (2013) Evaluating the effect of plant water availability on inner alpine coniferous trees based on sap flow measurements. Eur J For Res. doi:10.1007/s10342-013-0697-y Google Scholar
  53. Levitt J (1980) Responses of plants to environmental stresses. Academic Press, New YorkGoogle Scholar
  54. Llorens P, Poyatos R, Latron J, Delgado J, Gallert F (2008) Analysis of three severe droughts (1995–2006) and their effects on Pinus sylvestris transpiration and physiological response in a montane Mediterranean research catchment (Vallcebre, Spain). Geophys Res Abstr 10:EGU2008-A07353Google Scholar
  55. Lopushinsky W (1986) Seasonal and diurnal trends of heat pulse velocity in Douglas-fir and ponderosa pine. Can J For Res 16:814–821CrossRefGoogle Scholar
  56. Lösch R (2000) Wasserhaushalt der Pflanzen (Plant water relationships). UTB für Wissenschaft, Quelle und Meyer, Wiebelsheim, 595 ppGoogle Scholar
  57. Luis VC, Jiménez MS, Morales D, Kucera J, Wieser G (2005) Canopy transpiration in a Canary Islands pine forest. Agric For Meteorol 134:117–123CrossRefGoogle Scholar
  58. Lüttenschwager D, Wulf M, Rust F, Forkert J, Hüttl RF (1999) Tree canopy and field layer transpiration in Scots pine stands. In: Hüttl RF, Belmann K (eds) Changes of atmospheric chemistry and effects on forest ecosystems. Kluwer Academic, Dordrecht, pp 97–110Google Scholar
  59. Martín JL, Bethencourt J, Cuevas E (2011) Evaluación del calentamiento global en Tenerife. Tendencias desde 1944 en las temperaturas máximas y mínimas anuales. Informe técnico proyecto climaimpacto (MAC/3/C159) del programa de cooperación transnacional Madeira-Azores-Canarias 2007–2013.
  60. Mediavilla S, Escudero A (2004) Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. Forest Ecol Manag 187:281–294CrossRefGoogle Scholar
  61. Meinzer FC, Goldstein G, Holbrook NM, Jackson P, Cacelier J (1993) Stomatal and environmental control of transpiration in a lowland tropical forest tree. Plant, Cell Environ 16:429–436CrossRefGoogle Scholar
  62. Nadezhdina N, Cermak J, Meiresonne L, Ceulemans R (2007) Transpiration of Scots Pine in Flanders growing on soil with irregular substratum. For Ecol Manag 243:1–9CrossRefGoogle Scholar
  63. Nardini A, Lo Gullo MA, Salleo S (1999) Competitive strategies for water availability in two Mediterranean Quercus species. Plant, Cell Environ 22:109–116CrossRefGoogle Scholar
  64. Nourtier A, Chanz A, Granier A, Huc R (2011) Sap flow measurements by thermal dissipation method using cyclic heating: a processing method accounting for the non-stationary regime. Ann For Sci 68:1255–1264CrossRefGoogle Scholar
  65. Oren R, Philips N, Katul G, Ewers BE, Pataki DE (1998) Scaling xylem sap flux and soil water balance and calculating variance. A method for partitioning water flux in forests. Ann For Sci 55:191–216CrossRefGoogle Scholar
  66. Pallardy SG (2008) Physiology of woody plants, 3rd edn. Academic Press, San DiegoGoogle Scholar
  67. Pallardy SG, Cermák J, Ewers FW, Kaufmann MR, Parker WC, Sperry JS (1995) Water transport dynamics in trees and stands. In: Smith WK, Hinckley TM (eds) Resource physiology on conifers: acquisition, allocation and utilization. Academic Press, San Diego, pp 301–389CrossRefGoogle Scholar
  68. Peters J, Morales D, Jiménez MS (2003) Gas exchange characteristics of Pinus canariensis needles in a forest stand on Tenerife, Canary Islands. Trees 17:492–500. doi:10.1007/s00468-003-0261-3 CrossRefGoogle Scholar
  69. Peters J, González-Rodríguez AM, Jiménez MS, Morales D, Wieser G (2008) Influence of canopy position, needle age and season on the foliar gas exchange of Pinus canariensis. Eur J For Res 127:293–299CrossRefGoogle Scholar
  70. Poyatos R, Llorens P, Piñol J, Rubio C (2008) Response of scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd) to soil and atmospheric water deficits under Mediterranean mountain climate. Ann For Sci 65:306. doi:10.1051/forest:2008003 CrossRefGoogle Scholar
  71. Rambal S, Ourcival JM, Joffre R, Mouillot F, Nouvellon Y, Reichstein M, Rocheteau A (2003) Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Glob Change Biol 9:1813–1824CrossRefGoogle Scholar
  72. Ryan MG, Bond BJ, Law BE, Hubbard RM, Woodruff D, Ciencialia E, Kucera J (2000) Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia 124:553–560CrossRefGoogle Scholar
  73. Sabaté S, Gracia C, Sánchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis and Fagus sylvatica forest in the Mediterranean region. For Ecol Manag 162:23–37CrossRefGoogle Scholar
  74. Saxe H, Cannell MGR, Johnsen O, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–399CrossRefGoogle Scholar
  75. Somot S, Sevault F, Deque M, Crepon M (2008) 21st century climate change scenarios for the Mediterranean using a coupled atmosphere–ocean regional climate model. Glob Planet Change 63:112–126CrossRefGoogle Scholar
  76. Sturm N, Köstner B, Hartung W, Tenhunen JD (1998) Environmental and endogenous controls on leaf- and stand level water conductance in a Scots pine plantation. Ann Sci For 55:237–253CrossRefGoogle Scholar
  77. Tallaksen LM, Lanen HAJ (Eds) (2004) Hydrological drought—processes and estimation methods for stream flow and groundwater. Developments in Water Sciences vol 48, Elsevier, The NetherlandsGoogle Scholar
  78. Van Herk IG, Gower ST, Bronson DR, Tanner MS (2011) Effects of climate warming on canopy water dynamics of a boreal black spruce plantation. Can J For Res 41:217–227CrossRefGoogle Scholar
  79. Wieser G, Leo M (2012) Whole-tree water use by Pinus cembra at the treeline in the Central Tyrolean Alps. Plant Ecol Divers. doi:10.1080/17550874.2012.688070 Google Scholar
  80. Wieser G, Peters J, Luis VC, Morales D, Jiménez MS (2002) Ecophysiological studies on the water relations in a Pinus canariensis stand, Tenerife, Canary Islands. Phyton 42:291–304Google Scholar
  81. Wieser G, Gruber A, Bahn M, Catalá E, Carrillo E, Jiménez MS, Morales D (2009) Respiratory fluxes in a Canary Islands pine forest. Tree Physiol 29:457–466. doi:10.1093/treephys/tpp008 PubMedCrossRefGoogle Scholar
  82. Wilson KB, Hanson PJ, Mulhholland PJ, Baldocci DD, Wullschleger SD (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric For Meteorol 106:153–168CrossRefGoogle Scholar
  83. Wullschleger SD, King AW (2000) Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees. Tree Physiol 20:511–518PubMedCrossRefGoogle Scholar
  84. Zimmermann R, Schulze ED, Wirth C, Schulze EE, McDonald KC (2000) Canopy transpiration in a chronosequence of Central Siberian pine forests. Glob Change Biol 6:37–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Patricia Brito
    • 1
  • Jose R. Lorenzo
    • 1
  • Águeda Mª. González-Rodríguez
    • 1
  • Domingo Morales
    • 1
  • Gerhard Wieser
    • 2
  • Maria S. Jimenez
    • 1
  1. 1.Dpt. Plant BiologyUniversidad de La Laguna (ULL)La LagunaSpain
  2. 2.Dpt. Alpine Timberline Ecophysiology, Federal Research and Training Centre for ForestsNatural Hazards and Landscape (BFW)InnsbruckAustria

Personalised recommendations