Advertisement

European Journal of Forest Research

, Volume 133, Issue 4, pp 745–756 | Cite as

Early fungal community succession following crown fire in Pinus mugo stands and surface fire in Pinus sylvestris stands

  • Jurga MotiejūnaitėEmail author
  • Gražina Adamonytė
  • Reda Iršėnaitė
  • Sigitas Juzėnas
  • Jonas Kasparavičius
  • Ernestas Kutorga
  • Svetlana Markovskaja
Original Paper

Abstract

The early post-fire development of mycobiota following a crown fire in mountain pine plantations and a surface fire in Scots pine plantations, and in the corresponding unburnt stands in the coastal sand dunes of the Curonian Spit in western Lithuania was investigated. Species numbers in unburnt Pinus mugo and Pinus sylvestris stands showed annual fluctuation, but in the burnt sites, the numbers of fungi increased yearly, especially in the crown fire plots. Both burnt stand types—P. mugo and P. sylvestris—showed strongly significant (two-way ANOSIM; R = 1, p < 0.05) differences in species composition; the differences between unburnt sites were clearly expressed but less significant (R = 0.86, p < 0.05). Fungal species composition of burnt P. mugo and P. sylvestris sites was qualitatively different from that of corresponding unburnt sites (two-way ANOSIM; R ≥ 0.75, p < 0.05). The chronosequence of mycobiota in surface fire burns was less clearly defined than in crown fire sites, reflecting the greater patchiness of impacts of the surface fire. Although both fire types were detrimental or at least damaging to all functional groups of fungi (saprobic on soil and forest litter, wood-inhabiting, biotrophic, and mycorrhizal and lichenized fungi), their recovery and appearance (fructification) patterns varied between the groups and among the burn types. The end of the early post-fire fungal succession (cessation of sporocarp production of pyrophilous fungi) was recorded 3 years after the fire for both crown and surface fire types, which is earlier than reported by other authors. Rare or threatened fungal species that are dependent on fire regime were not recorded during the study.

Keywords

Coastal forest Mycorrhizal Wood-inhabiting Soil-litter saprobes Biotrophs Lichens 

Notes

Acknowledgments

We thank Gintaras Kantvilas (Hobart, Tasmania) for improving the language of the manuscript and valuable comments and Dalytė Matulevičiūtė (Vilnius, Lithuania) for supplying data on pine forest associations in the study area. Our sincere gratitude is extended to anonymous reviewers for valuable comments and suggestions for the manuscript. We acknowledge the help from the staff of Kuršių Nerija National Park. The study was supported by the Lithuanian State Science and Studies Foundation (Grants No. T–60/07, T–69/08, and T–52/09).

Supplementary material

10342_2013_738_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1,512 kb)
10342_2013_738_MOESM2_ESM.xls (136 kb)
Supplementary material 2 (XLS 135 kb)

References

  1. Artz RRE, Reid E, Anderson IC, Campbell CD, Cairney JWG (2009) Long term repeated prescribed burning increases evenness in the basidiomycete laccase gene pool in forest soils. FEMS Microbiol Ecol 67:397–410. doi: 10.1111/j.1574-6941.2009.00650.x PubMedCrossRefGoogle Scholar
  2. Aučina A, Rudawska M, Leski T, Ryliškis D, Pietras M, Riepšas E (2011) Ectomycorrhizal fungal communities on seedlings and conspecific trees of Pinus mugo grown on the coastal dunes of the Curonian Spit in Lithuania. Mycorrhiza 21:237–245. doi: 10.1007/s00572-010-0341-3 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, AssenGoogle Scholar
  4. Bastias BA, Anderson IC, Rangel-Castro JI, Parkin PI, Prosser JI, Cairney JWG (2009) Influence of repeated prescribed burning on incorporation of 13C from cellulose by forest soil fungi as determined by RNA stable isotope probing. Soil Biol Biochem 41:467–472. doi: 10.1016/j.soilbio.2008.11.018 CrossRefGoogle Scholar
  5. Bergeron Y, Leduc A, Harvey BD, Gauthier S (2002) Natural fire regime: a guide for sustainable management of the Canadian boreal forest. Silva Fenn 36:81–95Google Scholar
  6. Berglund H, Jönsson MT, Penttilä R, Vanha-Majamaa I (2011) The effects of burning and dead-wood creation on the diversity of pioneer wood-inhabiting fungi in managed boreal spruce forests. For Ecol Manag 261:1293–1305. doi: 10.1016/j.foreco.2011.01.008 CrossRefGoogle Scholar
  7. Brennan KEC, Christie FJ, York A (2009) Global climate change and litter decomposition: more frequent fire slows decomposition and increases the functional importance of invertebrates. Glob Change Biol 15:2958–2971. doi: 10.1111/j.1365-2486.2009.02011.x CrossRefGoogle Scholar
  8. Buechling A, Baker WL (2004) A fire history from tree rings in a high-elevation forest of Rocky Mountain National Park. Can J For Res 34:1259–1273. doi: 10.1139/x04-012 CrossRefGoogle Scholar
  9. Carlsson F, Edman M, Holm S, Eriksson A-M, Jonsson BG (2012) Increased heat resistance in mycelia from wood fungi prevalent in forests characterized by fire: a possible adaptation to forest fire. Fungal Biol 116:1025–1031. doi: 10.1016/j.funbio.2012.07.005 PubMedCrossRefGoogle Scholar
  10. Carpenter SE, Trappe JM (1985) Phoenicoid fungi: a proposed term for fungi that fruit after heat treatment of substrate. Mycotaxon 23:203–206Google Scholar
  11. Carpenter SE, Trappe JM, Ammirati J Jr (1987) Observation of fungal succession in the Mount St. Helens devastation zone, 1980–1983. Can J Bot 65:716–728CrossRefGoogle Scholar
  12. Claridge AW, Trappe JM, Hansen K (2009) Do fungi have a role as soil stabilizers and remediators after forest fire. For Ecol Manag 257:1063–1069. doi: 10.1016/j.foreco.2008.11.011 CrossRefGoogle Scholar
  13. Dahlberg A (2002) Effects of fire on ectomycorrhizal fungi in Fennoscandian boreal forests. Silva Fenn 36:69–80Google Scholar
  14. Danusevičius J (2000) Pušies selekcija Lietuvoje. Kilmių atranka, introdukcija, hibridizacija, selekcinė sėklininkystė [Breeding of pines. Provenance transfer, introduction, hybridisation, seed production]. Lututė, KaunasGoogle Scholar
  15. Daujotas M (1958) Lietuvos pajūrio smėlynų apželdinimas [Aforestation of sands in Lithuanian seacoast]. Mintis, VilniusGoogle Scholar
  16. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  17. Favilli F, Cherubini P, Collenberg M, Egli M, Sartori G, Schoch W, Haeberli W (2010) Charcoal fragments in Alpine soils as an indicator of landscape evolution during the Holocene in Val di Sole (Trentino, Italy). Holocene 20:67–79. doi: 10.1177/0959683609348850 CrossRefGoogle Scholar
  18. Galvonaitė A, Misiūnienė M, Valiukas D, Buitkuvienė MS (2007) Lietuvos klimatas [Lithuanian Climate]. Lietuvos hidrometeorologijos tarnyba, VilniusGoogle Scholar
  19. Gudžinskas Z (2000) Conspectus of alien plant species of Lithuania. 15. Azollaceae, Pinaceae, and Salicaceae. Bot Lith 6:235–242Google Scholar
  20. Hallingbäck T (1994) Ekologisk catalog över storsvampar. Sveriges Lantbruksuniversitet, ArtDatabanken, UppsalaGoogle Scholar
  21. Hallingbäck T (1995) Ekologisk catalog över lavar. Sveriges Lantbruksuniversitet, ArtDatabanken, UppsalaGoogle Scholar
  22. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  23. Ivanova GA, Ivanov VA, Kukavskaya EA, Soja AJ (2010) The frequency of forest fires in Scots pine stands of Tuva, Russia. Environ Res Lett 5:015002 (7 p). doi: 10.1088/1748-9326/5/1/015002
  24. Johnson EA (1992) Fire and vegetation dynamics: studies from the North American boreal forest. Cambridge University Press, UKCrossRefGoogle Scholar
  25. Jonsson L, Dahlberg A, Nilsson M, Zackrisson O, Karen O (1999) Ectomycorrhizal fungal communities in late-successional Swedish boreal forests, and their composition following wildfire. Mol Ecol 8:205–215CrossRefGoogle Scholar
  26. Jönsson MT, Edman M, Jonsson BG (2008) Colonization and extinction patterns of wood-decaying fungi in a boreal old-growth Picea abies forest. J Ecol 96:1065–1075. doi: 10.1111/j.1365-2745.2008.01411.x CrossRefGoogle Scholar
  27. Junninen K, Kouki J, Renvall P (2008) Restoration of natural legacies of fire in European boreal forests: an experimental approach to the effects on wood-decaying fungi. Can J For Res 308:202–215. doi: 10.1139/X07-145 CrossRefGoogle Scholar
  28. Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18:116–126. doi: 10.1071/WF07049 CrossRefGoogle Scholar
  29. Kempf A, Scherrer HU (1982) Forstgeschichtliche Notizen zum Walliser Wald. Eidgenössische Anstalt für das forstliche Versuchswesen 243:1–123Google Scholar
  30. Ketner-Oostra R, van der Peijl MJ, Sýkora KV (2006) Restoration of lichen diversity in grass-dominated vegetation of coastal dunes after wildfire. J Veg Sci 17:147–156. doi: 10.1111/j.1654-1103.2006.tb02434.x CrossRefGoogle Scholar
  31. Kipfer T, Egli S, Ghazoul J, Moser B, Wohlgemuth T (2010) Susceptibility of ectomycorrhizal fungi to soil heating. Fungal Biol 114:467–473. doi: 10.1016/j.funbio.2010.03.008 PubMedCrossRefGoogle Scholar
  32. Kotiranta H, Saarenoksa R, Kytövuori I (2009) Aphyllophoroid fungi of Finland. A check-list with ecology, distribution, and threat categories. Norrlinia 19:1–223Google Scholar
  33. Legendre P, Legendre L (1998) Numerical ecology, 2nd English edition. Elsevier, AmsterdamGoogle Scholar
  34. Lehtonen H, Kolström T (2000) Forest fire history in Viena Karelia, Russia. Scand J For Res 15:585–590. doi: 10.1080/02827580050216833 CrossRefGoogle Scholar
  35. Lygis V, Vasiliauskaite I, Stenlid J, Vasaitis R (2010) Impact of forest fire on occurrence of Heterobasidion annosum s.s. root rot and other wood-inhabiting fungi in roots of Pinus mugo. Forestry 83:83–92. doi: 10.1093/forestry/cpp036 CrossRefGoogle Scholar
  36. McMullan-Fisher SJM, May TW, Keane PJ (2002) The macrofungal community and fire in a Mountain Ash forest in southern Australia. Fungal Divers 10:57–76Google Scholar
  37. McMullan-Fisher SJM, May TW, Robinson RM, Bell TL, Lebel T, Catcheside P, York A (2011) Fungi and fire in Australian ecosystems: a review of current knowledge, management implications and future directions. Aust J Bot 59:70–90CrossRefGoogle Scholar
  38. Mueller GM, Bills GF, Foster MS (eds) (2004) Biodiversity of Fungi. Inventory and monitoring methods. Elsevier, AmsterdamGoogle Scholar
  39. Niklasson M, Granström A (2000) Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–1499CrossRefGoogle Scholar
  40. Olšauskas AM (2009) Woody and grassy vegetation development in different landscape elements of the Curonian spit. Environ Res Eng Manag 4(50):30–36Google Scholar
  41. Olsson J, Jonsson BG (2010) Restoration fire and wood-inhabiting fungi in a Swedish Pinus sylvestris forest. For Ecol Manag 259:1971–1980. doi: 10.1016/j.foreco.2010.02.008 CrossRefGoogle Scholar
  42. Penttilä R, Kotiranta H (1996) Short-term effects of prescribed burning on wood-rotting fungi. Silva Fenn 30:399–419CrossRefGoogle Scholar
  43. Petersen PM (1970) Danish fireplace fungi. Dansk Bot Ark 27(3):1–97Google Scholar
  44. Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, ChichesterGoogle Scholar
  45. Rayner ADM, Todd NK (1981) Ecological genetics of basidiomycete populations in decaying wood. Brit Mycol Soc Symp 4:129–142Google Scholar
  46. Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45Google Scholar
  47. Robinson RM, Mellican AE, Smith RH (2008) Epigeous macrofungal succession in the first five years following a wildfire in karri (Eucalyptus diversicolor) regrowth forest in Western Australia. Austral Ecol 33:807–820. doi: 10.1111/j.1442-9993.2008.01853.x CrossRefGoogle Scholar
  48. Ryan KC (2002) Dynamic interactions between forest structure and fire behaviour in boreal ecosystems. Silva Fenn 36:13–39Google Scholar
  49. Ryvarden L, Gilbertson RL (1993) European polypores. Part 1. Fungiflora, OsloGoogle Scholar
  50. Ryvarden L, Gilbertson RL (1994) European polypores. Part 2. Fungiflora, OsloGoogle Scholar
  51. Schmidt O (2006) Wood and tree fungi—biology, damage, protection, and use. Springer, BerlinGoogle Scholar
  52. Stähli M, Finsinger W, Tinner W, Allgöwer B (2006) Wildfire history and fire ecology of the Swiss National Park (Central Alps): new evidence from charcoal, pollen and plant macrofossils. Holocene 16:805–817. doi: 10.1191/0959683606hol967rp CrossRefGoogle Scholar
  53. Stankevičiūtė J, Rašomavičius V (2009) Fire as possibility of restoration of the Natura 2000 habitats. In: Grasserbauer M, Sakalauskas L, Zavadskas EK (eds) KORSD-2009, Selected papers, Vilnius, pp 466–470Google Scholar
  54. Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycol Res 103:1353–1359CrossRefGoogle Scholar
  55. Stokland JN, Larsson K-H (2011) Legacies from natural forest dynamic: different effect of forest management on wood-inhabiting fungi in pine and spruce forests. For Ecol Manag 261:1707–1721. doi: 10.1016/j.foreco.2011.01.003 CrossRefGoogle Scholar
  56. Thies WG (1990) Effects of prescribed fire on diseases of conifers. In: Walstad JD, Radosevich SR, Sandberg DV (eds) Natural and prescribed fire in Pacific Northwest Forests. Oregon State University Press, Corvalis, pp 117–121Google Scholar
  57. Turner MG, Hargrove WW, Gardner RH, Romme WH (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J Veg Sci 5:731–742CrossRefGoogle Scholar
  58. Vrålstad T, Holst-Jensen A, Schumacher T (1998) The postfire discomycete Geopyxis carbonaria (Ascomycota) is a biotrophic root associate with Norway spruce (Picea abies) in nature. Mol Ecol 7:609–616PubMedCrossRefGoogle Scholar
  59. Wallenius TH, Kuuluvainen T, Vanha-Majamaa I (2004) Fire history in relation to site type and vegetation in Vienansalo wilderness in eastern Fennoscandia, Russia. Can J For Res 34:1400–1409. doi: 10.1139/X04-023 CrossRefGoogle Scholar
  60. Warcup JH (1990) Occurrence of ectomycorrhizal and saprotrophic discomycetes after a wild fire in a eucalypt forest. Mycol Res 94:1065–1069CrossRefGoogle Scholar
  61. Weir J, Johnson E, Miyanishi K (2000) Fire frequency and the spatial age mosaic of the mixed-wood boreal forest in western Canada. Ecol Appl 10:1162–1177CrossRefGoogle Scholar
  62. Zackrisson O (1977) The influence of forest fires in the north Swedish boreal forest. Oikos 29:22–32CrossRefGoogle Scholar
  63. Zoller H (1981) Pinaceae. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa 1(2), 3 Auflage. Paul Parey, Berlin, pp 32–104Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jurga Motiejūnaitė
    • 1
    Email author
  • Gražina Adamonytė
    • 1
  • Reda Iršėnaitė
    • 1
  • Sigitas Juzėnas
    • 2
  • Jonas Kasparavičius
    • 1
  • Ernestas Kutorga
    • 2
  • Svetlana Markovskaja
    • 1
  1. 1.Nature Research CentreInstitute of BotanyVilniusLithuania
  2. 2.Department of Botany and GeneticsVilnius UniversityVilniusLithuania

Personalised recommendations