Advertisement

European Journal of Forest Research

, Volume 133, Issue 1, pp 61–71 | Cite as

A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress

  • Willy TegelEmail author
  • Andrea Seim
  • Dietrich Hakelberg
  • Stephan Hoffmann
  • Metodi Panev
  • Thorsten Westphal
  • Ulf Büntgen
Original Paper

Abstract

Future changes in tree growth, associated with a warmer and drier climate, are predicted for many species and locations across the European Mediterranean Basin. However, quantification of the intensity and severity of related consequences for forest ecosystem functioning and productivity remains challenging. Species-specific distribution limits that are particularly sensitive to small changes in the ambient climate may provide an ideal test bed to assess the nature of past growth trends and extremes and their responsible controls. Here, we seek to understand how twentieth century climate change affected the growth of European beech (Fagus sylvatica L.) nearby its south-eastern distribution limit in Albania and Macedonia on the Balkan Peninsula. We sampled 93 living trees from undisturbed mixed forest stands at ~1,450 m a.s.l. and 29 timbers from nearby historical buildings. Application of different tree-ring detrending techniques allowed robust composite chronologies with varying degrees of high- to low-frequency variability to be developed back to 1648 ad. Comparison with local meteorological station measurements and continental grid-box climate indices revealed spatiotemporal instability in growth–climate response patterns. Nevertheless, year-to-year and decadal-long fluctuations in radial beech growth were significantly (P < 0.001) negatively correlated at −0.61 with June–September temperature over the 1951–1995 period. This (inverse) relationship between increased beech growth and decreased summer temperature is somewhat indicative for the importance of plant-available soil moisture, which likely controls ring width formation near the species-specific south-eastern distribution limit. Significant positive correlations between beech growth and drought (scPDSI; r = 0.57) confirm metabolistic drought constraints. However, an unexpected late twentieth century growth increase not only contradicts the previously observed growth dependency to summer soil moisture, but also denies any putative drought-induced forest ecosystem suppression in this part of the Mediterranean Basin.

Keywords

Albania Balkan Peninsula Dendroclimatology Fagus sylvatica L. Macedonia Tree-ring width 

Notes

Acknowledgments

We are thankful to K.-F. Rittershofer and P. Lera for logistical coordination and support in the field. Our thanks also go to J. Weishampel and H.-P. Kahle for their helpful comments and suggestions. The study was supported by the German Research Foundation (project #SP 437/16-1).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andreu-Hayles L, Planells O, Gutierrez E, Muntan E, Helle G, Anchukaitis KJ, Schleser GH (2011) Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Glob Change Biol 17:2095–2112CrossRefGoogle Scholar
  2. Biondi F, Visani S (1996) Recent developments in the analysis of an Italian tree-ring network with emphasis on European beech (Fagus sylvatica L.). in Tree Rings, Environment and Humanity. Radiocarbon 1996:713–725Google Scholar
  3. Büntgen U, Wilson R, Wilmking M, Niedzwiedz T, Bräuning A (2009) The ‘Divergence Problem’ in tree-ring research. In: Kaczka R, Malik I, Owczarek P, Gärtner H, Helle G, Heinrich I (eds) TRACE – tree rings in archaeology, climatology and ecology 7, Scientific Technical Report STR 09/03. Geoforschungszentrum Potsdam, Potsdam, pp 212–219Google Scholar
  4. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370CrossRefGoogle Scholar
  5. Čufar K, Prilan P, de Luis M, Gričar J (2008) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22:749–758CrossRefGoogle Scholar
  6. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘Divergence Problem’ in Northern Forests: a review of the tree-ring evidence and possible causes. Global Planet Change 60:289–305CrossRefGoogle Scholar
  7. Di Filippo A, Biondi F, Čufar K, De Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892CrossRefGoogle Scholar
  8. Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe: a dendroecological study. For Ecol Manag 173:63–78CrossRefGoogle Scholar
  9. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J Forest Res 124:319–333CrossRefGoogle Scholar
  10. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen. Ulmer, StuttgartGoogle Scholar
  11. Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11CrossRefGoogle Scholar
  12. Giesecke T, Hickler T, Kunkel T, Sykes MT, Bradshaw RHW (2007) Towards an understanding of the Holocene distribution of Fagus sylvatica L. J Biogeogr 34:118–131CrossRefGoogle Scholar
  13. Griggs C, DeGaetano A, Kuniholm P, Newton M (2007) A regional high-frequency reconstruction of May–June precipitation in the north Aegean from oak tree rings, A.D. 1089–1989. Int J Climatol 27:1075–1089CrossRefGoogle Scholar
  14. Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol Syst 42:313–333CrossRefGoogle Scholar
  15. Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P (2012) On the increased frequency of mediterranean drought. J Clim 25:2146–2160CrossRefGoogle Scholar
  16. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–2174CrossRefGoogle Scholar
  17. Jump AS, Hunt JM, Peñuelas J (2007) Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny Mountains, NE Spain. Ecoscience 14:507–518CrossRefGoogle Scholar
  18. Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362PubMedCrossRefGoogle Scholar
  19. Koutavas A (2012) CO2 fertilization and enhanced drought resistance in Greek firs from Cephalonia Island, Greece. Glob Change Biol 19:529–539CrossRefGoogle Scholar
  20. Lang G (1994) Quartäre Vegetationsgeschichte Europas. Methoden und Ergebnisse, FischerGoogle Scholar
  21. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees 19:385–401CrossRefGoogle Scholar
  22. Linares JC, Camarero JJ (2012) From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Glob Change Biol 18:1000–1015CrossRefGoogle Scholar
  23. Luterbacher J, García-Herrera R, Akcer-On S et al (2012) A review of 2000 years of paleoclimatic evidence in the Mediterranean. In: Lionello P (ed) The Climate of the Mediterranean region: From the past to the future. Elsevier, Amsterdam, pp 87–185CrossRefGoogle Scholar
  24. Magri D (2008) Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35:450–463CrossRefGoogle Scholar
  25. Martín-Benito D, del Río M, Cañellas I (2010) Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean mountains. Ann For Sci 67:401p1–401p13CrossRefGoogle Scholar
  26. Martínez-Vilalta J, López BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob Change Biol 14:1868–2881CrossRefGoogle Scholar
  27. Medlyn BE, Rey A, Barton CVM, Forstreuter M (2001) Above ground growth responses of forest trees to elevated atmospheric CO2 concentrations. In: Karnosky DF, Ceulemans R, Scarascia-Mugnozza GE, Innes JL (eds) The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CAB International, Wallingford, pp 127–146CrossRefGoogle Scholar
  28. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659CrossRefGoogle Scholar
  29. Osborn TJ, Briffa KR, Jones PD (1997) Adjusting variance for sample-size in tree-ring chronologies and other regional-mean time-series. Dendrochronologia 15:89–99Google Scholar
  30. Panayotov M, Bebi P, Trouet V, Yurukov S (2010) Climate signals in Pinus peuce and Pinus heldreichii tree-ring chronologies from the Pirin Mountains in Bulgaria. Trees 24:479–490CrossRefGoogle Scholar
  31. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140CrossRefGoogle Scholar
  32. Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth century changes of tree-ring delta C-13 at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Change Biol 14:1076–1088CrossRefGoogle Scholar
  33. Peñuelas J, Canadell JG, Ogaya R (2011) Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeogr 20:597–608CrossRefGoogle Scholar
  34. Piovesan G, Di Filippo A, Alessandrini A, Biondi F, Schirone B (2005) Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. J Veg Sci 16:13–28Google Scholar
  35. Piovesan G, Biondi F, Di Filippo A, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica) forests of the central Apennines, Italy. Glob Change Biol 14:1265–1281CrossRefGoogle Scholar
  36. Poljanšek S, Ballian D, Nagel TA, Levanič T (2012) A 435-Year-long european black pine (Pinus nigra) chronology for the central-western Balkan region. Tree-Ring Res 68(1):31–44CrossRefGoogle Scholar
  37. Rathgeber C, Nicault A, Guiot J, Keller T, Guibal F, Roche P (2000) Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global Planet Change 26:405–421CrossRefGoogle Scholar
  38. Rennenberg H, Seiler W, Matyssek R, Gessler A, Kreuzwieser J (2004) Die Buche (Fagus sylvatica L.) ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? Allg Forst- und Jagd-Ztg 175:210–224Google Scholar
  39. Sarris D, Christodoulakis D, Körner C (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Change Biol 13:1187–1200CrossRefGoogle Scholar
  40. Schröter D, Cramer W, Leemans R et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337PubMedCrossRefGoogle Scholar
  41. Seim A, Buentgen U, Fonti P, Haska H, Herzig F, Tegel W, Trouet V, Treydte K (2012) Climate sensitivity of a millennium-long pine chronology from Albania. Clim Res 51:217–228CrossRefGoogle Scholar
  42. Tabaku V (2000) Struktur von Buchen-Urwäldern in Albanien im Vergleich mit deutschen Buchen-Naturwaldreservaten und -Wirtschaftswäldern. Cuvillier, GöttingenGoogle Scholar
  43. Touchan R, Xoplaki E, Funkhouser G, Luterbacher J, Hughes MK, Erkan N, Akkemik Ü, Stephan J (2005) Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Clim Dyn 25:75–98CrossRefGoogle Scholar
  44. Trouet V, Panayotov M, Ivanova A, Frank D (2012) A Pan-European summer teleconnection mode recorded by a new temperature reconstruction from the eastern Mediterranean (1768–2008). Holocene 22:887–898CrossRefGoogle Scholar
  45. van der Maaten E (2012) Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 26:777–788CrossRefGoogle Scholar
  46. van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. Int J Climatol 19:2818–2834Google Scholar
  47. Vila B, Vennetier M, Ripert C, Chandioux O, Liang E, Guibal F, Torrel F (2008) Has global change induced divergent trends in radial growth of Pinus sylvestris and Pinus halepensis at their bioclimatic limit? The example of the Sainte-Baume forest (south-east France). Ann For Sci 65:709p1–709p9CrossRefGoogle Scholar
  48. Westphal T, Tegel W, Heussner KU, Lera P, Rittershofer KF (2011) Erste dendrochronologische Datierungen historischer Hölzer in Albanien. Archäol Anz 2010.2:75–95Google Scholar
  49. Wigley TML, Briffa KR, Jones PD (1984) On the average of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Willy Tegel
    • 1
    Email author
  • Andrea Seim
    • 2
  • Dietrich Hakelberg
    • 1
  • Stephan Hoffmann
    • 1
  • Metodi Panev
    • 1
  • Thorsten Westphal
    • 3
  • Ulf Büntgen
    • 4
    • 5
  1. 1.Institute of Forest Sciences, IWWUniversity of FreiburgFreiburgGermany
  2. 2.Regional Climate Group, Department of Earth SciencesUniversity of GothenburgGothenburgSweden
  3. 3.German Archaeological Institute, DAIBerlinGermany
  4. 4.Swiss Federal Research Institute, WSLBirmensdorfSwitzerland
  5. 5.Oeschger Centre for Climate Change Research, OCCRBernSwitzerland

Personalised recommendations