European Journal of Forest Research

, Volume 132, Issue 5–6, pp 841–850 | Cite as

Spatial pattern of trees influences species productivity in a mature oak–pine mixed forest

  • Marie Ange Ngo Bieng
  • Thomas Perot
  • François de Coligny
  • François Goreaud
Original Paper

Abstract

Spatial pattern has a key role in the interactions between species in plant communities. These interactions influence ecological processes involved in the species dynamics: growth, regeneration and mortality. In this study, we investigated the effect of spatial pattern on productivity in mature mixed forests of sessile oak and Scots pine. We simulated tree locations with point process models and tree growth with spatially explicit individual growth models. The point process models and growth models were fitted with field data from the same stands. We compared species productivity obtained in two types of mixture: a patchy mixture and an intimate mixture. Our results show that the productivity of both species is higher in an intimate mixture than in a patchy mixture. Productivity difference between the two types of mixture was 11.3 % for pine and 14.7 % for oak. Both species were favored in the intimate mixture because, for both, intraspecific competition was more severe than interspecific competition. Our results clearly support favoring intimate mixtures in mature oak–pine stands to optimize tree species productivity; oak is the species that benefits the most from this type of management. Our work also shows that models and simulations can provide interesting results for complex forests with mixtures, results that would be difficult to obtain through experimentation.

Keywords

Point process model Spatially explicit growth model Intimate mixture Patchy mixture Quercus petraea Pinus sylvestris 

References

  1. Balandier P, Sonohat G, Sinoquet H, Varlet-Grancher C, Dumas Y (2006) Characterisation, prediction and relationships between different wavebands of solar radiation transmitted in the understorey of even-aged oak (Quercus petraea, Q-robur) stands. Trees Struct Funct 20(3):363–370CrossRefGoogle Scholar
  2. Barot S, Gignoux J, Menaut JC (1999) Demography of a savanna palm tree: predictions from comprehensive spatial pattern analyses. Ecology 80(6):1987–2005CrossRefGoogle Scholar
  3. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems, 4th edn. Blackwell Publishing, OxfordGoogle Scholar
  4. Brown AHF (1992) Functioning of mixed-species stands at Gisburn, N.W. England. In: Cannell MGR, Malcolm DC, Robertson PA (eds) The ecology of mixed-species stands of trees. Special publication number 11 of the British Ecological Society. Blackwell scientific publications, OxfordGoogle Scholar
  5. Canham CD, LePage PT, Coates KD (2004) A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can J For Res 34(4):778–787CrossRefGoogle Scholar
  6. Cavard X, Bergeron Y, Chen HYH, Paré D, Laganière J, Brassard B (2011) Competition and facilitation between tree species change with stand development. Oikos 120(11):1683–1695CrossRefGoogle Scholar
  7. Courbaud B, Goreaud F, Dreyfus P, Bonnet FR (2001) Evaluating thinning strategies using a tree distance dependent growth model: some examples based on the CAPSIS software “uneven-aged spruce forests” module. For Ecol Manag 145(1–2):15–28CrossRefGoogle Scholar
  8. Cressie NAC (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  9. Dieckmann U, Law R, Metz JAJ (2000) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Dufour-Kowalski S, Courbaud B, Dreyfus P, Meredieu C, de Coligny F (2012) Capsis: an open software framework and community for forest growth modelling. Ann For Sci 69(2):221–233CrossRefGoogle Scholar
  11. Duplat P, Tran-Ha M (1997) Modélisation de la croissance en hauteur dominante du chêne sessile (Quercus petraea Liebl) en France Variabilité inter-régionale et effet de la période récente (1959–1993). Ann For Sci 54(7):611–634CrossRefGoogle Scholar
  12. Filipescu CN, Comeau PG (2007) Competitive interactions between aspen and white spruce vary with stand age in boreal mixed woods. For Ecol Manag 247(1–3):175–184CrossRefGoogle Scholar
  13. Forrester DI, Smith RGB (2012) Faster growth of Eucalyptus grandis and Eucalyptus pilularis in mixed-species stands than monocultures. For Ecol Manag 286:81–86CrossRefGoogle Scholar
  14. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233(2–3):211–230CrossRefGoogle Scholar
  15. Getzin S, Dean C, He FL, Trofymow JA, Wiegand K, Wiegand T (2006) Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography 29(5):671–682CrossRefGoogle Scholar
  16. Grissino-Mayer HD (2002) Research report evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res 57(2):205–221Google Scholar
  17. Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, ChichesterGoogle Scholar
  18. Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10(9):835–848PubMedCrossRefGoogle Scholar
  19. Kelty MJ (2006) The role of species mixtures in plantation forestry. For Ecol Manag 233(2–3):195–204CrossRefGoogle Scholar
  20. Lamosova T, Dolezal J, Lanta V, Leps J (2010) Spatial pattern affects diversity-productivity relationships in experimental meadow communities. Acta Oecol Int J Ecol 36(3):325–332CrossRefGoogle Scholar
  21. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771PubMedCrossRefGoogle Scholar
  22. Lotwick HW, Silverman BW (1982) Methods for analysing spatial processes of several types of points. J R Stat Soc B 44(3):406–413Google Scholar
  23. McNaughton SJ (1977) Diversity and stability of ecological communities - comment on role of empiricism in ecology. Am Nat 111(979):515–525CrossRefGoogle Scholar
  24. MCPFE, UNECE, FAO (2011) State of Europe’s forests 2011. MCPFE, WarsawGoogle Scholar
  25. Mokany K, Ash J, Roxburgh S (2008) Effects of spatial aggregation on competition, complementarity and resource use. Austral Ecol 33(3):261–270CrossRefGoogle Scholar
  26. Ngo Bieng MA (2007) Construction de modèles de structure spatiale permettant de simuler des peuplements virtuels réalistes. Application aux peuplements mélangés Chêne sessile—Pin sylvestre de la région Centre. Doctorat thesis in Forestry Science, ENGREF-Cemagref, Nogent-sur-VernissonGoogle Scholar
  27. Ngo Bieng MA, Ginisty C, Goreaud F, Perot T (2006) A first typology of Oak and Scots pine mixed stands in the Orleans forest (France), based on the canopy spatial structure. N Z J For Sci 36(2):325–346Google Scholar
  28. Ngo Bieng MA, Ginisty C, Goreaud F (2011) Point process models for mixed sessile forest stands. Ann For Sci 68(2):267–274CrossRefGoogle Scholar
  29. Perot T, Picard N (2012) Mixture enhances productivity in a two-species forest: evidence from a modelling approach. Ecol Res 27:83–94CrossRefGoogle Scholar
  30. Perot T, Perret S, Meredieu C, Ginisty C (2007) Prévoir la croissance et la production du Pin sylvestre : le module Sylvestris sous Capsis 4. Revue Forestiere Francaise 59(1):57–84Google Scholar
  31. Perot T, Goreaud F, Ginisty C, Dhôte JF (2010) A model bridging distance-dépendent and distance-independent tree models to simulate the growth of mixed forests. Ann For Sci 67(5):502CrossRefGoogle Scholar
  32. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Statistics and computing. Springer, New YorkCrossRefGoogle Scholar
  33. Pinheiro JC, Bates DM, DebRoy S, Sarkar D, the R Development Core Team (2011) nlme: linear and nonlinear mixed effects models. R package version 3.1–101Google Scholar
  34. Pretzsch H (1997) Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony. For Ecol Manag 97 (3):237–253Google Scholar
  35. Pretzsch H, Schutze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128(2):183–204CrossRefGoogle Scholar
  36. Pretzsch H, Block J, Dieler J, Hoang Dong P, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67(7):712CrossRefGoogle Scholar
  37. Pukkala T (1989) Methods to describe the competition process in a tree stand. Scand J Forest Res 4:187–202CrossRefGoogle Scholar
  38. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  39. Regent I (2005) Windendro 2005a: manual for tree-ring analysis. Université du Quebec à ChicoutimiGoogle Scholar
  40. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc B 39:172–212Google Scholar
  41. Sonohat G, Balandier P, Ruchaud F (2004) Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests. Ann For Sci 61(7):629–641CrossRefGoogle Scholar
  42. Stadt KJ, Huston C, Coates KD, Feng Z, Dale MRT, Lieffers VJ (2007) Evaluation of competition and light estimation indices for predicting diameter growth in mature boreal mixed forests. Ann For Sci 64:477–490CrossRefGoogle Scholar
  43. Tomppo E (1986) Models and methods for analysing spatial patterns of trees. Communicationes Instituti Forestalis Fenniae (No. 138)Google Scholar
  44. Uriarte M, Canham CD, Thompson J, Zimmerman JK (2004a) A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecol Monogr 74(4):591–614CrossRefGoogle Scholar
  45. Uriarte M, Condit R, Canham CD, Hubbell SP (2004b) A spatially explicit model of sapling growth in a tropical forest: does the identity of neighbours matter? J Ecol 92(2):348–360CrossRefGoogle Scholar
  46. Vallet P, Perot T (2011) Silver fir stand productivity is enhanced when mixed with Norway spruce: evidence based on large-scale inventory data and a generic modelling approach. J Veg Sci 22(5):932–942CrossRefGoogle Scholar
  47. Vanclay JK (2006) Experiment designs to evaluate inter- and intraspecific interactions in mixed plantings of forest trees. For Ecol Manag 233(2–3):366–374CrossRefGoogle Scholar
  48. Vettenranta J (1999) Distance-dependent models for predicting the development of mixed coniferous forests in Finland. Silva Fenn 33(1):51–72Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marie Ange Ngo Bieng
    • 1
  • Thomas Perot
    • 2
  • François de Coligny
    • 3
  • François Goreaud
    • 4
  1. 1.CIRAD, UMR SYSTEMMontpellier Cedex 1France
  2. 2.Irstea, Forest Ecosystems Research UnitNogent-sur-VernissonFrance
  3. 3.INRA, UMR931 AMAP, Botany and Computational Plant ArchitectureMontpellier Cedex 5France
  4. 4.Irstea, UR LISC Laboratoire d’Ingénierie des Systèmes ComplexesAubièreFrance

Personalised recommendations