European Journal of Forest Research

, Volume 132, Issue 5–6, pp 765–776 | Cite as

Complex resistivity tomography (CRT) for fungus detection on standing oak trees

  • Tina MartinEmail author
  • Thomas Günther
Original Paper


Complex resistivity tomography is presented as an extension of electrical impedance tomography for non-destructive structural tree investigation. Results of laboratory measurements with different frequencies suggest measuring the resistivity and in addition the phase shift at about 0.1 Hz. The measured data are processed using a finite-element-based inversion algorithm, which uses triangular meshes and is thus able to consider any tree shape. We apply the technique to three different oak trees with the aim of fungi detection. Measurements of a healthy tree both in summer and in winter show a ring-shaped structure and indicate a strong seasonal dependence, particularly for the resistivity magnitude. Tomograms on fungi-infected trees clearly show disturbances at the infections at different heights compared with healthy trees. A comparison with tree section photographs shows promising agreement. Moreover, a comparison with measurements at oak-wood samples in the laboratory shows at least partly quantitative coincidence. To conclude, the phase image provides additional information and helps to differentiate disturbances in the cell structure from pure moisture changes. Therefore, the method has the potential to deliver useful additional information, when carried out during routine tree assessment.


Spectral induced polarisation (SIP) Tree investigation Tomographical electrical measurements Non-destructive testing Data inversion Oak 


  1. Archie G (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min 146:54–62Google Scholar
  2. Argus Electronic (2005) Handbuch zu Picus Calliper. Argus Electronic,
  3. Beard LP, Hohmann GW, Tripp AC (1996) Fast resistivity/IP inversion using a low-contrast approximation. Geophysics 61:169–179CrossRefGoogle Scholar
  4. Bieker D, Rust S (2010) Electric resistivity tomography shows radial variation of electrolytes in Quercus robur. Can J For Res 40:1189–1193CrossRefGoogle Scholar
  5. Börner F, Schopper J, Weller A (1996) Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys Prospect 44:583–601CrossRefGoogle Scholar
  6. Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52:379–398CrossRefGoogle Scholar
  7. Du Q (1991) Einfluss holzartspezifischer Eigenschaften auf die elektrische Leitfähigkeit wichtiger Handelshölzer: PhD thesis, Universität HamburgGoogle Scholar
  8. Fengel D, Wegener G (1984)Wood—chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  9. Göcke L, Rust S, Weihs U, Günther T, Rücker C (2008) Combining sonic and electrical impedance tomography for the nondestructive testing of trees: western Arborist, Spring, Berlin, p 11Google Scholar
  10. Günther T, Rücker C, Spitzer K (2006) 3-d modeling and inversion of DC resistivity data incorporating topography—part II: inversion. Geophys J Int 166:506–517CrossRefGoogle Scholar
  11. Guyot A, Ostergaard KT, Lenkopane M, Fan J, Lockington DA (2013) Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers. Tree Physiology. doi: 10.1093/treephys/tps128
  12. Hagrey S (2006) Electrical resistivity imaging of tree trunks: Near Surface Geophysics 179–187Google Scholar
  13. Hagrey S (2007) Geophysical imaging of root-zone, trunk and moisture heterogeneity. J Exp Bot 58:839–854CrossRefGoogle Scholar
  14. Hanskötter B (2003) Diagnose fakultativer Farbkerne an stehender Rotbuche (Fagus sylvatica L.) mittels elektrischer Widerstandstomographie: PhD thesis, Georg-Augst-Universität Göttingen, Germany, Cuvillier Verlag GöttingenGoogle Scholar
  15. Kemna A, Binley A, Slater L (2004) Crosshole IP imaging for engineering and environmental applications. Geophysics 69:97–107CrossRefGoogle Scholar
  16. Koestel J, Kemna A, Javaux M, Binley A, Vereecken H (2008) Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR. Water Resour Res 44:W12411CrossRefGoogle Scholar
  17. Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe, vol 2. Springer, BerlinGoogle Scholar
  18. Kucera L (1986) Kernspintomographie und elektrische Widerstandsmessung als Diagnosemethode der Vitalität erkrankter Bäume. Schweiz Z Forstwes 137:673–690Google Scholar
  19. Lesmes D, Frye K (2001) Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone. J Geophys Res 106:4079–4090CrossRefGoogle Scholar
  20. Marshall D, Madden T (1959) Induced polarisation, a study of its causes. Geophysics 24:790–816CrossRefGoogle Scholar
  21. Martin T (2009) Anwendung des komplexen elektrischen Widerstandsverfahrens an Eichen (Quercus spp.): PhD thesis, Technische Universität Clausthal, GermanyGoogle Scholar
  22. Martin T (2012) Complex resistivity measurements on oak. Eur J Wood Wood Prod 70(1):45–53. doi: 10.1007/s00107-010-0493-z CrossRefGoogle Scholar
  23. Nicolotti G, Socco L, Martinis R, Godio A, Sambuelli L (2003) Application and comparison of three tomographic techniques for detection of decay in trees. J Aboric 29:66–78Google Scholar
  24. Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner GmbH & Co, Leinfelden-EchterdingenGoogle Scholar
  25. Oldenborger GA, Routh PS, Knoll MD (2005) Sensitivity of electrical resistivity tomography data to electrode position errors: Geophys. J Int 163:1–9Google Scholar
  26. Piirto D, Wilcox W (1978) Critical evaluation of the pulsed-current resistance meter for detection of decay in wood. For Prod J 28:52–57Google Scholar
  27. Radic T (2008) Instrumentelle und auswertemethodische Arbeiten zur Wechselstromgeoelektrik: PhD thesis, Technische Universität Berlin, GermanyGoogle Scholar
  28. Rücker C, Günther T, Spitzer K (2006) 3-d modeling and inversion of DC resistivity data incorporating topography—part I: modeling. Geophys J Int 166:495–505CrossRefGoogle Scholar
  29. Rust S, Franz S, Minke M, Schumann I, Roloff A (2002) Schalltomographie zur Erkennung von Fäule und Höhlungen an stehenden Bäumen: Stadt+Grün, pp 50–52Google Scholar
  30. Schleifer N, Weller A, Schneider S, Junge A (2002) Investigation of a bronze age plankway by spectral induced polarization. Archaeol Prospect 9:243–253CrossRefGoogle Scholar
  31. Schön J (2004) Physical properties of rocks—fundamentals and principles of petrophysics, Vol 18. Elsevier, AmsterdamGoogle Scholar
  32. Schwarze F, Engels J, Mattheck C (1999) Holzzersetzende Pilze in Bäumen. Rombach-Verlag, FreiburgGoogle Scholar
  33. Scott J, Barker R (2003) Determining pore-throat size in Permo-Triassic sandstones from low-frequency electrical spectroscopy. Geophys Res Lett 30:1450CrossRefGoogle Scholar
  34. Skaar C (1988) Wood–water relations. Springer, BerlinCrossRefGoogle Scholar
  35. Slater L, Lesmes D (2002) IP interpretation in environmental investigations. Geophysics 67:77–88CrossRefGoogle Scholar
  36. Tattar T, Shigo A, Chase T (1972) Relationship between the degree of resistance to a pulsed electric current and wood in progressive stages of discoloration and decay in living trees. Can J For Res 2:236–243CrossRefGoogle Scholar
  37. Tiitta M, Kainulainen P, Harju A, Venlinen M, Manninen A-M, Vuorinen M, Viitanen H (2003) Comparing the effect of chemical and physical properties on complex electrical impedance of scots pine wood. Holzforschung 57:433–439CrossRefGoogle Scholar
  38. Trendelenburg R, Mayer-Wegelin H (1955) Das Holz als Rohstoff, Vol 2. Carl-Hanser-Verlag, MunichGoogle Scholar
  39. Wagenführ R (1999) Anatomie des Holzes. DRW-Verlag, Leinfelden-EchterdingenGoogle Scholar
  40. Waxman M, Smits L (1968) Electrical conductivities in oil-bearing shaly sands. Soc Petrol Eng J:107–122Google Scholar
  41. Weihs U, Dubbel V, Krummheuer F, Just A (1999) Die elektrische Widerstandstomographie. Forst und Holz 54:166–170Google Scholar
  42. Weller A, Nordsiek S, Debschütz W (2010a) Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization. Geophysics 75:E215–E226CrossRefGoogle Scholar
  43. Weller A, Slater L, Nordsiek S, Ntarlagiannis D (2010b) On the estimation of specific surface per unit pore volume from induced polarisation: a robust empirical relation fits multiple datasets. Geophysics 75:WA105–WA112CrossRefGoogle Scholar
  44. Zanetti C, Weller A, Vennetier M, Meriaux P (2011) Detection of buried tree root samples by using geoelectric measurements: a laboratory experiment. Plant Soil 339:273–283CrossRefGoogle Scholar
  45. Zürcher E (1988) Diagnosemethoden des Gesundheits- und Vitalitätszustandes der Bäume. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 133(1):25–42Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Federal Institute for Materials Research and Testing (BAM)BerlinGermany
  2. 2.Leibniz Institute for Applied Geophysics (LIAG)HannoverGermany
  3. 3.Federal Institute for Geosciences and Natural Resource (BGR)BerlinGermany

Personalised recommendations