Advertisement

European Journal of Forest Research

, Volume 132, Issue 4, pp 607–619 | Cite as

Fungal root pathogen (Heterobasidion parviporum) increases drought stress in Norway spruce stand at low elevation in the Alps

  • Yuri GoriEmail author
  • Paolo Cherubini
  • Federica Camin
  • Nicola La Porta
Original Paper

Abstract

Tree-ring patterns of Picea abies (L.) Karst. both unaffected and affected by Heterobasidion parviporum were analysed in three mature stands located at different elevations in the Eastern Alps. The main objectives were (1) to clarify the role of climatic conditions on infected trees; (2) to estimate indirect volume losses due to the prolonged presence of the fungus within the wood. The low elevation site showed the highest growth decline in the last decade, whereas all infected trees at medium and high elevation showed a slow growth decline over many decades. We hypothesise that infection could be dated over 80 years at the highest site. Fungal attack made P. abies more susceptible to drought stress at low elevation site. Both infected and healthy P. abies at medium and high elevation showed similar climate–growth relationships, suggesting that the same driving environmental factors influence their growth. At low elevation, H. parviporum was seemingly more aggressive, causing a more rapid decline, decreasing the ability of host trees to cope with drought and, in some cases, inducing cambial activity to stop. P. abies at higher elevation, however, exhibited a very slow decline and no sign of increasing water stress since the influence of climate on tree growth was the same for both infected and healthy trees.

Keywords

Dendroecology Drought stress Climate–growth relationship Fungal infection Growth reduction PDSI 

Notes

Acknowledgments

This study was supported and co-funded by the ‘Fondazione CARITRO—Cassa di Risparmio di Trento e Rovereto’ with the project ISOCHANGE. The authors wish to thank Magdalena Nötzli and Anne Verstege (WSL, Birmensdorf, Switzerland) for valuable laboratory assistance, Luca Ziller (FEM-IASMA, S. Michele a/Adige, Italy), Vivienne Frankell for correcting the English text and the ‘Magnifica Comunità di Fiemme’ for allowing us to sample the trees. The authors wish to thank two anonymous reviewers for their insightful and helpful comments on a previous version of the manuscript.

References

  1. Arvidson B (1975) A study of the economic effects of root rot (Polyporus annosus) in the Norway Spruce. Translation, Environment CanadaGoogle Scholar
  2. Auer I, Boehm R, Jurkovic A et al (2007) HISTALP: historical instrumental climatological surface time series of the Greater Alpine Region RID C-8718-2009 RID A-2447-2011. Int J Climatol 27:17–46. doi: 10.1002/joe.1377 CrossRefGoogle Scholar
  3. Battipaglia G, Saurer M, Cherubini P et al (2009) Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy RID D-4121-2009. For Ecol Manag 257:820–828. doi: 10.1016/j.foreco.2008.10.015 CrossRefGoogle Scholar
  4. Benz-Hellgren M, Stenlid J (1995) Long-term reduction in the diameter growth of butt rot affected Norway spruce, Picea abies. For Ecol Manag 74:239–243. doi: 10.1016/0378-1127(95)03530-N CrossRefGoogle Scholar
  5. Biondi F (1997) Evolutionary and moving response functions in dendroclimatology. Dendrochronologia 15:139–150Google Scholar
  6. Biondi F (2000) Are climate-tree growth relationships changing in North-Central Idaho, USA RID G-2536-2010. Arct Antarct Alp Res 32:111–116. doi: 10.2307/1552442 CrossRefGoogle Scholar
  7. Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies RID G-2536-2010. Comput Geosci 30:303–311. doi: 10.1016/j.cageo.2003.11.004 CrossRefGoogle Scholar
  8. Bloomberg W, Hall AA (1986) Effects of laminated root rot on relationships between stem growth and root-system size, morphology, and spatial distribution in Douglas-fir. For Sci 32:202–219Google Scholar
  9. Bloomberg W, Morrison D (1989) Relationship of growth reduction in Douglas-fir to infection by Armillaria root disease in southeastern British-Columbia. Phytopathology 79:482–487. doi: 10.1094/Phyto-79-482 CrossRefGoogle Scholar
  10. Bloomberg W, Reynolds G (1985) Growth loss and mortality in laminated root-rot infection centers in 2nd-growth Douglas-fir on Vancouver-island. For Sci 31:497–508Google Scholar
  11. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi: 10.1016/j.dendro.2008.01.002 CrossRefGoogle Scholar
  12. Capretti P, Korhonen K, Mugnai L, Romagnoli C (1990) An intersterility group of Heterobasidion annosum specialized to Abies alba. Eur J For Pathol 20:231–240CrossRefGoogle Scholar
  13. Cherubini P, Fontana G, Rigling D et al (2002) Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. J Ecol 90:839–850. doi: 10.1046/j.1365-2745.2002.00715.x CrossRefGoogle Scholar
  14. Cook ER (1985) A time series approach to tree-ring standardization. Thesis dissertation, University of Arizona, ArizonaGoogle Scholar
  15. Cook ER, Holmes RL (1984) Program ARSTAN users manual. Laboratory of tree ring research. University of Arizona, ArizonaGoogle Scholar
  16. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer, DordrechtGoogle Scholar
  17. Cook E, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370. doi: 10.1177/095968369700700314 CrossRefGoogle Scholar
  18. Dai Y, Vainio E, Hantula J et al (2003) Investigations on Heterobasidion annosum s. lat. in central and eastern Asia with the aid of mating tests and DNA fingerprinting. For Pathol 33:269–286. doi: 10.1046/j.1439-0329.2003.00328.x CrossRefGoogle Scholar
  19. Desprez-Loustau ML, Marcais B, Nageleisen LM et al (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612. doi: 10.1051/forest:2006040 CrossRefGoogle Scholar
  20. Dobbertin M, Baltensweiler A, Rigling D (2001) Tree mortality in an unmanaged mountain pine (Pinus mugo var. uncinata) stand in the Swiss National Park impacted by root rot fungi. For Ecol Manag 145:79–89. doi: 10.1016/S0378-1127(00)00576-4 CrossRefGoogle Scholar
  21. Fischlin A, Midgley GF, Price J et al (2007) Ecosystems, their properties, goods and services. In: Parry ML, et al. (eds) Climate change 2007: impacts, adaptation and vulnerability. Contrib. Working group II to the 4th assessment rep. Intergovernmental panel on climate change, Cambridge, pp 211–272Google Scholar
  22. Frank D, Esper J, Cook ER (2007) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett. doi: 10.1029/2007GL030571 Google Scholar
  23. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  24. Gärtner H, Nievergelt D (2010) The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28:85–92. doi: 10.1016/j.dendro.2009.09.002 CrossRefGoogle Scholar
  25. Gonzalez IG (2001) WEISER: a computer program to identify event and pointer years in dendrochronological series. Dendrochronologia 19:239–244Google Scholar
  26. Grissino-Mayer HD, Holmes RL, Fritts HC (1996) The international tree ring data bank program library version 2.0. Users’s manual. Laboratory of Tree Ring Research, ArizonaGoogle Scholar
  27. Guiot J (1991) The bootstrapped response function. Tree-Ring Bull 51:39–41Google Scholar
  28. Helama S, Lindholm M, Timonen M, Eronen M (2004) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor Appl Climatol 79:239–254. doi: 10.1007/s00704-004-0077-0 CrossRefGoogle Scholar
  29. Henry DA, Guardiola-Claramonte M, Barron-Gafford GA et al. (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change-type drought. Proceedings of the national academy of sciences, 2009. doi: 10.1073/pnas.0901438106
  30. Hietala AM, Nagy NE, Steffenrem A et al (2009) Spatial patterns in hyphal growth and substrate exploitation within Norway spruce stems colonized by the pathogenic white-rot fungus Heterobasidion parviporum RID C-5536-2008. Appl Environ Microbiol 75:4069–4078. doi: 10.1128/AEM.02392-08 PubMedCrossRefGoogle Scholar
  31. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  32. Joseph G, Kelsey R, Thies W (1998) Hydraulic conductivity in roots of ponderosa pine infected with black-stain (Leptographium wageneri) or annosus (Heterobasidion annosum) root disease. Tree Physiol 18:333–339PubMedCrossRefGoogle Scholar
  33. Kimberley MO, Hood IA, Gardner JF (2002) Armillaria root disease of Pinus radiata in New Zealand. 6: growth loss. N Z J For Sci 32:148–162Google Scholar
  34. Korhonen K (1978) Intersterility groups of Heterobasidion annosum. Commun Inst For Fenniae 94:1–25Google Scholar
  35. Korhonen K, Stenlid J (1998) Biology of Heterobasidion annosum. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International, Wallingford, pp 43–70Google Scholar
  36. Kozlowski TT (1969) Tree physiology and forest pests. J For 67:118–123Google Scholar
  37. Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic Press, LondonGoogle Scholar
  38. La Porta N, Capretti P, Kammiovirta K et al (1997) Geographical cline of DNA variation within the F intersterility group of Heterobasidion annosum in Italy. Plant Pathol 46:773–784. doi: 10.1046/j.1365-3059.1997.d01-65.x CrossRefGoogle Scholar
  39. La Porta N, Apostolov K, Korhonen K (1998) Intersterility groups of Heterobasidion annosum and their host specificity in Bulgaria. Eur J For Pathol 28:2–9CrossRefGoogle Scholar
  40. La Porta N, Capretti P, Thomsen IM, Kasanen R, Hietala AM, Von Weissenberg K (2008) Forest pathogens with higher damage potential due to climate change in Europe. Can J Plant Pathol 30:177–195CrossRefGoogle Scholar
  41. LeBlanc DC (1990) Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain, New York. Can J For Res 20:1399–1407. doi: 10.1139/x90-185 CrossRefGoogle Scholar
  42. Levanic T, Gricar J, Gagen M et al (2009) The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees-Struct Funct 23:169–180. doi: 10.1007/s00468-008-0265-0 CrossRefGoogle Scholar
  43. Lewis K (1997) Growth reduction in spruce infected by Inonotus tomentosus in central British Columbia. Can J For Res 27:1669–1674. doi: 10.1139/cjfr-27-10-1669 CrossRefGoogle Scholar
  44. Linares CJ, Camarero JJ, Bowker MA et al (2010) Stand-structural effects on Heterobasidion abietinum-related mortality following drought events in Abies pinsapo. Oecologia 164:1107–1119. doi: 10.1007/s00442-010-1770-6 PubMedCrossRefGoogle Scholar
  45. Lonsdale D, Gibbs JN (1996) Effects of climate change on fungal diseases of trees. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge University Press, CambridgeGoogle Scholar
  46. Maloy OC (1974) Benomyl-malt agar for the purification of cultures of wood decay fungi. Plant Dis Rep 58:902–904Google Scholar
  47. Manion PD (1991) Tree disease concepts, 2nd edn. Prentice Hall, Inc., EnglewoodGoogle Scholar
  48. Niemelä T, Korhonen K (1998) Taxonomy of the genus Heterobasidion. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International, Wallingford, pp 27–33Google Scholar
  49. Oliva J, Samils N, Johansso U, Bendz-Hellgren M, Stenlid J (2008) Urea treatment reduced Heterobasidion annosum s.l. root rot in Picea abies after 15 years. For Ecol Manag 255:2876–2882CrossRefGoogle Scholar
  50. Oliva J, Thor M, Stenlid J (2010) Reaction zone and periodic increment decrease in Picea abies trees infected by Heterobasidion annosum s.l. For Ecol Manag 260:692–698. doi: 10.1016/j.foreco.2010.05.024 CrossRefGoogle Scholar
  51. Palmer WC (1965) Meteorological drought. Research paper, 45. US Weather Bureau, WashingtonGoogle Scholar
  52. Pedersen B, McCune B (2002) A non-invasive method for reconstructing the relative mortality rates of trees in mixed-age, mixed-species forests. For Ecol Manag 155:303–314. doi: 10.1016/S0378-1127(01)00567-9 CrossRefGoogle Scholar
  53. Puddu A, Luisi N, Capretti P, Santini A (2003) Environmental factors related to damage by Heterobasidion abietinum in Abies alba forests in Southern Italy. For Ecol Manag 180:37–44. doi: 10.1016/S0378-1127(02)00607-2 CrossRefGoogle Scholar
  54. Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands: a review. For Ecol Manag 175:253–273. doi: 10.1016/S0378-1127(02)00134-2 CrossRefGoogle Scholar
  55. Sànchez ME, Capretti P, Calzado C et al. (2005) Root rot disease on Abies pinsapo in southern Spain. In: Manka M, Lakomy P (eds) Proceedings of the 11th international conference on root and butt rots, 16–22 August 2004, IUFRO. The August Ciezuowski, Agricultural University, Poznan, pp 220–223Google Scholar
  56. Scherm H, Chakraborty S (1999) Climate change and plant disease. Annu Rev Phytopathol 37:399–426PubMedCrossRefGoogle Scholar
  57. Schmitt C, Parmeter J, Kliejunas J (2000) Annosus root rot disease of western conifers. For Pest Leafl US Department of Agriculture, Forest ServiceGoogle Scholar
  58. Schweingruber FH (1996) Tree rings and environment: dendroecology. Paul Haupt Verlag, BerneGoogle Scholar
  59. Schweingruber FH, Eckstein D, Serre-Bachet F, Braker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38Google Scholar
  60. Shain L (1979) Dynamic responses of differentiated sapwood to injury and infection. Phytopathology 69:1143–1147CrossRefGoogle Scholar
  61. Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State UniversityGoogle Scholar
  62. Stalpers JA (1978) Identification of wood-inhabiting Anphyllophorales in pure culture. Studies in mycology no. 16. Centraal bureau voor Schimmelcultures, BaarnGoogle Scholar
  63. Stenlid J, Johansson M (1987) Infection of roots of Norway spruce (Picea abies) by Heterobasidion annosum.2. early changes in phenolic content and toxicity. Eur J For Pathol 17:217–226CrossRefGoogle Scholar
  64. Tsanova P (1974) The distribution of Fomes annosus and factors affecting its development in some natural Spruce forests. Gorskostopanska Nauka 11:59–70Google Scholar
  65. van der Maaten-Theunissen M, Bouriaud O (2012) Climate–growth relationships at different stem heights in silver fir and Norway spruce. Can J For Res 42:958–969. doi: 10.1139/x2012-046 CrossRefGoogle Scholar
  66. van der Schrier G, Efthymiadis D, Briffa KR, Jones PD (2007a) European Alpine moisture variability for 1800–2003. Int J Biometeorol 27:415–427. doi: 10.1002/joc.1411 Google Scholar
  67. van der Schrier G, Efthymiadis D, Briffa KR et al (2007b) European Alpine moisture variability for 1800–2003. Int J Biometeorol 27:415–427. doi: 10.1002/joc.1411 Google Scholar
  68. Venables R, Hornik K, Albrecht G (2010) Main package of Venables and Ripley’s MASS, Ver. 7.3.7. Repository CRAN, Licence GPLGoogle Scholar
  69. Waldboth M, Oberhuber W (2009) Synergistic effect of drought and chestnut blight (Cryphonectria parasitica) on growth decline of European chestnut (Castanea sativa). For Pathol 39:43–55. doi: 10.1111/j.1439-0329.2008.00562.x CrossRefGoogle Scholar
  70. Walter H, Lieth H (1967) Klimadiagramm-Weltatlas. 3 Bande. Fischer, JenaGoogle Scholar
  71. Weber H, Moravec J, Theurillat JP (2000) International code of phytosociological nomenclature. 3rd edn. J Veg Sci 11:739–768Google Scholar
  72. Woodward S, Stenlid J, Karjalainen R et al (1998) Heterobasidion annosum: biology, ecology, impact and control. Cab International, WallingfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuri Gori
    • 1
    Email author
  • Paolo Cherubini
    • 2
  • Federica Camin
    • 1
  • Nicola La Porta
    • 1
  1. 1.FEM-IASMA Edmund Mach FoundationSan Michele all’ AdigeItaly
  2. 2.Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations