European Journal of Forest Research

, Volume 132, Issue 4, pp 593–606 | Cite as

Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China)

  • Xuefei Yang
  • Jürgen Bauhus
  • Sabine Both
  • Teng Fang
  • Werner Härdtle
  • Wenzel Kröber
  • Keping Ma
  • Karin Nadrowski
  • Kequan Pei
  • Michael Scherer-Lorenzen
  • Thomas Scholten
  • Gunnar Seidler
  • Bernhard Schmid
  • Goddert von Oheimb
  • Helge Bruelheide
Original Paper

Abstract

Experimental forest plantations to study biodiversity–ecosystem functioning (BEF) relationships have recently been established in different regions of the world, but subtropical biomes have not been covered so far. Here, we report about the initial survivorship of 26 tree species in the first such experiment in subtropical China. In the context of the joint Sino–German–Swiss Research Unit “BEF-China,” 271 experimental forest plots were established using 24 naturally occurring tree species and two native commercial conifers. Based on the survival inventories carried out in November 2009 and June 2010, the overall survival rate was 87 % after the first 14 months. Generalized mixed-effects models showed that survival rates of seedlings were significantly affected by species richness, the species’ leaf habit (deciduous or evergreen), species identity, planting date, and altitude. In the first survey, seedling establishment success decreased with increasing richness levels, a tendency that disappeared in the second survey after replanting. Though evergreen species performed less well than deciduous species with establishment rates of 84 versus 93 % in the second survey, their planting success exceeded the general expectation for subtropical broad-leaved evergreen species. These results have important implications for establishing mixed-species plantations for diversity conservation and improvement of ecosystem functioning in the Chinese subtropics and elsewhere. Additional costs associated with mixed-species plantations as compared to conventional plantations also demonstrate the potential of upscaling BEF experiments to large-scale afforestation projects.

Keywords

BEF-China Biodiversity and ecosystem functioning Tree diversity experiment Jiangxi Forest plantation success Seedling performance 

References

  1. Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156PubMedCrossRefGoogle Scholar
  2. Bauhus J, Schmerbeck J (2010) Silvicultural options to enhance and use forest plantation biodiversity. In: Bauhus J, van der Meer P, Kanninen M (eds) Ecosystem goods and services from plantation forests. Earthscan, London, pp 96–139Google Scholar
  3. Bauhus J, van der Meer P, Kanninen M (2010) Ecosystem goods and services from plantation forests. Earthscan, LondonGoogle Scholar
  4. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160PubMedCrossRefGoogle Scholar
  5. Bi J, Blanco JA, Seely B, Kimmins JP, Ding Y, Welham C (2007) Yield decline in Chinese-fir plantations: a simulation investigation with implications for model complexity. Can J For Res 37(9):1615–1630CrossRefGoogle Scholar
  6. Bosu PP, Cobbinah JR, Nichols JD, Nkrumah EE, Wagner MR (2006) Survival and growth of mixed plantations of Milicia excelsa and Terminalia superba 9 years after planting in Ghana. For Ecol Manag 233(2–3):352–357CrossRefGoogle Scholar
  7. Bruelheide H, Böhnke M, Both S, Fang T, Assmann T, Baruffol M, Bauhus J, Buscot F, Chen X-Y, Ding B-Y, Durka W, Erfmeier A, Fischer M, Geißler C, Guo D, Guo L-D, Härdtle W, He J-S, Hector A, Kröber W, Kühn P, Lang A, Nadrowski K, Pei K, Scherer-Lorenzen M, Shi X, Scholten T, Schuldt A, Trogisch S, von Oheimb G, Welk E, Wirth C, Wu Y-T, Yang X, Zeng X, Zhang S, Zhou H, Ma K, Schmid B (2011) Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol Monogr 8(1):25–42CrossRefGoogle Scholar
  8. Burdett AN (1990) Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can J For Res 20(4):415–427CrossRefGoogle Scholar
  9. Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592PubMedCrossRefGoogle Scholar
  10. Don A, Arenhövel W, Jacob R, Scherer-Lorenzen M, Schulze E-D (2007) Anwuchserfolg von 19 verschiedenen Baumarten bei Erstaufforstungen - Ergebnisse eines Biodiversitätsexperimen. Allgemeine Jagd- und Forstzeitung 178:164–172Google Scholar
  11. Forrester DI, Bauhus J, Cowie AL (2005) On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 209(1–2):147–155CrossRefGoogle Scholar
  12. Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE (2010) Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. For Ecol Manag 259(9):1761–1770CrossRefGoogle Scholar
  13. Goodman RC, Jacobs DF, Apostol KG, Wilson BC, Gardiner ES (2009) Winter variation in physiological status of cold stored and freshly lifted semi-evergreen Quercus nigra seedlings. Ann For Sci 66(1):103CrossRefGoogle Scholar
  14. Götmark F, Fridman J, Kempe G, Norden B (2005) Broadleaved tree species in conifer-dominated forestry: regeneration and limitation of saplings in southern Sweden. For Ecol Manag 214(1–3):142–157CrossRefGoogle Scholar
  15. Healy C, Gotelli NJ, Potvin C (2008) Partitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantation. J Ecol 96:903–913CrossRefGoogle Scholar
  16. Hodgson DJ, Rainey PB, Buckling A (2002) Mechanisms linking diversity, productivity and invasibility in experimental bacterial communities. Proc Royal Soc Lond Ser B Biol Sci 269(1506):2277–2283CrossRefGoogle Scholar
  17. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35CrossRefGoogle Scholar
  18. Jäkel A, Roth M (2004) Conversion of single-layered Scots pine monocultures into close-to-nature mixed hardwood forests: effects on parasitoid wasps as pest antagonists. Eur J For Res 123(3):203–212CrossRefGoogle Scholar
  19. Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127(2):89–101CrossRefGoogle Scholar
  20. Lang AC, Härdtle W, Bruelheide H, Geißler C, Nadrowski K, Schuldt A, Yu M, Oheimb GV (2010) Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China. For Ecol Manage 260:1708–1715CrossRefGoogle Scholar
  21. Liang J, Buongiorno J, Monserud RA, Kruger EL, Zhou M (2007) Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. For Ecol Manag 243(1):116–127CrossRefGoogle Scholar
  22. Liu S, Li X, Niu L (1998) The degradation of soil fertility in pure larch plantations in the northeastern part of China. Ecol Eng 10(1):75–86CrossRefGoogle Scholar
  23. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, LondonGoogle Scholar
  24. Menalled FD, Kelty MJ, Ewel JJ (1998) Canopy development in tropical tree plantations: a comparison of species mixtures and monocultures. For Ecol Manag 104(1–3):249–263CrossRefGoogle Scholar
  25. Messaoud Y, Houle G (2006) Spatial patterns of tree seedling establishment and their relationship to environmental variables in a cold-temperate deciduous forest of eastern North America. Plant Ecol 185(2):319–331CrossRefGoogle Scholar
  26. Montagnini F (2000) Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland. For Ecol Manag 134(1–3):257–270CrossRefGoogle Scholar
  27. Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem function and service? Environ Sustain 2:75–79Google Scholar
  28. Nichols JD, Bristow M, Vanclay JK (2006) Mixed-species plantations: prospects and challenges. For Ecol Manag 233(2–3):383–390CrossRefGoogle Scholar
  29. Piotto D (2008) A meta-analysis comparing tree growth in monocultures and mixed plantations. For Ecol Manag 255(3–4):781–786CrossRefGoogle Scholar
  30. Potvin C, Gotelli NJ (2008) Biodiversity enhances individual performance but does not affect survivorship in tropical trees. Ecol Lett 11:217–223PubMedCrossRefGoogle Scholar
  31. Puettmann K, Ammer C (2007) Trends in North American and European regeneration research under the ecosystem management paradigm. Eur J For Res 126(1):1–9CrossRefGoogle Scholar
  32. Quijas S, Schmid B, Balvanera P (2010) Plant diversity enhances provision of ecosystem services: a new synthesis. Basic Appl Ecol 11(7):582–593CrossRefGoogle Scholar
  33. Radoglou K, Raftoyannis Y (2002) The impact of storage, desiccation and planting date on seedling quality and survival of woody plant species. Forestry 75(2):179–190CrossRefGoogle Scholar
  34. Reubens B, Poesen J, Nyssen J, Leduc Y, Abraha A, Tewoldeberhan S, Bauer H, Gebrehiwot K, Deckers J, Muys B (2009) Establishment and management of woody seedlings in gullies in a semi-arid environment (Tigray, Ethiopia). Plant Soil 324(1):131–156CrossRefGoogle Scholar
  35. Rouhi-Moghaddam E, Hosseini SM, Ebrahimi E, Tabari M, Rahmani A (2008) Comparison of growth, nutrition and soil properties of pure stands of Quercus castaneifolia and mixed with Zelkova carpinifolia in the Hyrcanian forests of Iran. For Ecol Manag 255(3–4):1149–1160CrossRefGoogle Scholar
  36. Salles JF, Poly F, Schmid B, Roux XL (2009) Community niche predicts the functioning of denitrifying bacterial assemblages. Ecology 90(12):3324–3332PubMedCrossRefGoogle Scholar
  37. Scherer-Lorenzen M, Potvin C, Koricheva J, Schmid B, Hector A, Bornik Z, Reynolds G, Schulze E-D (2005) The design of experimental tree plantations for functional biodiversity research. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Temperate and boreal systems Springer, Berlin, pp 347–376CrossRefGoogle Scholar
  38. Scherer-Lorenzen M, Bonilla J-L, Potvin C (2007a) Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116:2108–2124CrossRefGoogle Scholar
  39. Scherer-Lorenzen M, Schulze E-D, Don A, Schumacher J, Weller E (2007b) Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspect Plant Ecol Evol Syst 9:53–70CrossRefGoogle Scholar
  40. Simpson J, Osborne D (2006) Performance of seven hardwood species underplanted to Pinus elliottii in south-east Queensland. For Ecol Manag 233(2–3):303–308CrossRefGoogle Scholar
  41. Tsakaldimi M, Zagas T, Tsitsoni T, Ganatsas P (2007) Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant Soil 278:85–93CrossRefGoogle Scholar
  42. Vehviläinen H, Koricheva J (2006) Moose and vole browsing patterns in experimentally assembled pure and mixed forest stands. Ecography 29(4):497–506CrossRefGoogle Scholar
  43. Vilà M, Inchausti P, Vayreda J, Barrantes O, Gracia C, Ibáñez JJ, Mata T (2005) confounding factors in the observational productivity-diversity relationship in forests. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) The functional significance of forest diversity (Ecological Studies 176). Ecological studies, vol 176. Springer, Berlin, pp 65–86CrossRefGoogle Scholar
  44. Vilà M, Vayreda J, Comas L, Ibáñez JJ, Mata T, Obón B (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecol Lett 10(3):241–250PubMedCrossRefGoogle Scholar
  45. Vilagrosa A, Cortina J, Gil-Pelegrín E, Bellot J (2003) Suitability of drought-preconditioning techniques in Mediterranean climate. Restor Ecol 11(2):208–216CrossRefGoogle Scholar
  46. Villar-Salvador P, Planelles R, Enríquez E, Rubira JP (2004) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Manag 196(2–3):257–266CrossRefGoogle Scholar
  47. Wang X-H, Kent M, Fang X-F (2007) Evergreen broad-leaved forest in Eastern China: its ecology and conservation and the importance of resprouting in forest restoration. For Ecol Manag 245(1–3):76–87CrossRefGoogle Scholar
  48. Wang Q, Wang S, Huang Y (2008) Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed. For Ecol Manag 255:1210–1218CrossRefGoogle Scholar
  49. Webster R, Oliver M (2001) Geostatistics for Environmental Scientists. Wiley, ChichesterGoogle Scholar
  50. Yang Z, Jin H, Wang G (2010) An assessment of restoration success to forests planted for ecosystem restoration in loess plateau, Northwestern China. Environ Monit Assess 164(1):357–368PubMedCrossRefGoogle Scholar
  51. Yu M-J, Hu Z-H, Yu J-P, Ding B-Y, Fang T (2001) Forest vegetation types in Gutianshan Natural Reserve in Zhejiang. J Zhejiang University Agric Life Sci 27:375–380 (in Chinese)Google Scholar
  52. Zeugin F, Potvin C, Jansa J, Scherer-Lorenzen M (2010) Is tree diversity an important driver for phosphorus and nitrogen acquisition of a young tropical plantation? For Ecol Manag 260(9):1424–1433CrossRefGoogle Scholar
  53. Zuur A, Ieno E, Walker N, Saveliev A, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xuefei Yang
    • 1
    • 9
  • Jürgen Bauhus
    • 2
  • Sabine Both
    • 1
  • Teng Fang
    • 3
  • Werner Härdtle
    • 4
  • Wenzel Kröber
    • 1
  • Keping Ma
    • 5
  • Karin Nadrowski
    • 6
  • Kequan Pei
    • 5
  • Michael Scherer-Lorenzen
    • 2
  • Thomas Scholten
    • 7
  • Gunnar Seidler
    • 1
  • Bernhard Schmid
    • 8
  • Goddert von Oheimb
    • 4
  • Helge Bruelheide
    • 1
    • 10
  1. 1.Martin Luther University Halle WittenbergHalleGermany
  2. 2.University of FreiburgFreiburgGermany
  3. 3.Gutianshan National Nature ReserveZhejiangChina
  4. 4.Leuphana University of LüneburgLüneburgGermany
  5. 5.Institute of BotanyCASBeijingChina
  6. 6.University of LeipzigLeipzigGermany
  7. 7.University of TübingenTübingenGermany
  8. 8.University of ZurichZurichSwitzerland
  9. 9.Key Laboratory of Biodiversity and Biogeography, Kunming Institute of BotanyCAS KunmingKunmingChina
  10. 10.German Centre for Integrative Biodiversity Research (IDiv)LeipzigGermany

Personalised recommendations