European Journal of Forest Research

, Volume 132, Issue 4, pp 579–591 | Cite as

Functional analysis of vegetation on alpine treeline ecotone in the Julian and Kamnik-Savinja Alps in Slovenia

Original Paper


Our study focused on the functional aspects of plant species and vegetation at the transition from larch (Larix decidua Mill.) forest to mountain pine (Pinus mugo Turra) stands on the alpine treeline ecotone. With increasing elevation, living conditions grow harsher, which is reflected in the plant species and functional trait composition of plant communities. At four different localities in the Slovenian Alps, relevés along an altitudinal gradient and according to vegetation type were made (European larch forests, larch trees-mountain pine shrubs, mountain pine shrubs), using standard Central European phytocoenological method. In the upper mountain pine belt, few differential species were found, since most species represented in mountain pine stands also occurred in the lower two vegetation belts, while there were many differential species in the lower forest belt. Species with considerable competitive ability and moderate stress tolerance dominated the upper treeline ecotone, whereas ruderality is poorly expressed. The importance of stress tolerance in plant strategies increased slightly in the mountain pine belt. Changes in the representation of some functional traits attributes were detected by vegetation belts, but complete species turnover did not occur. Changes in dominant life form involved greater cover of chamaephytes and nanophanerophytes in the upper mountain pine belt. Species with evergreen leaves dominated mountain pine stands and deciduous forest stands. The share of species with scleromorphic leaves increased in the direction of the mountain pine belt while the share of species with mesomorphic and hygromorphic leaves declined. Mountain pine stands create good conditions for the regeneration of tree species and colonisation by ecologically more demanding forest species while species of alpine grasslands withdraw on open areas. Since today’s treeline is lowered due to past human activity, an upward shift is expected. Also, considering the great importance of competition strategy, current conditions in mountain pine stands are favourable for future forest succession.


Alpine treeline ecotone Vegetation Plant traits Functional type Mountain pine 


  1. Aeschimann D, Lauber K, Moser D, Theurillat J-P (2004) Flora alpina. Ein Atlas sämtlicher 4500 Gefäßpflanzen der Alpen. 3 BdGoogle Scholar
  2. ARSO (2009) Hydrological data. ed. S. e. agencyGoogle Scholar
  3. Badeck FW, Lischke H, Bugmann H, Hickler T, Hönninger K, Lasch P, Lexer MJ, Mouillot F, Schaber J, Smith B (2001) Tree species composition in European pristine forests: comparison of stand data to model predictions. Clim Change 51:307–347CrossRefGoogle Scholar
  4. Boer M, Stafford Smith M (2003) A plant functional approach to the prediction of changes in Australian rangeland vegetation under grazing and fire. J Veg Sci 14(3):333–344. doi:10.1111/j.1654-1103.2003.tb02159.x CrossRefGoogle Scholar
  5. Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetations Kunde, 3rd edn. Springer, WienGoogle Scholar
  6. Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R (2001) A plant trait analysis of responses to grazing in a long-term experiment. J Appl Ecol 38(2):253–267CrossRefGoogle Scholar
  7. Chapin FSI, Bret-Harte MS, Hobbie SE, Zhong H (1996) Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7(3):347–358CrossRefGoogle Scholar
  8. Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405(6783):234–242PubMedCrossRefGoogle Scholar
  9. Chytry M, Otypkova Z (2003) Plot sizes used for phytosociological sampling of European vegetation. J Veg Sci 14(4):563–570CrossRefGoogle Scholar
  10. Crawley MJ (2009) Life history and environment. Plant Ecol. doi:10.1002/9781444313642.ch4 Google Scholar
  11. Dainese M, Bragazza L (2012) Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alpine Bot 122(1):11–21. doi:10.1007/s00035-012-0101-4 CrossRefGoogle Scholar
  12. Dakskobler I (2006) The association Rhodothamno-Laricetum (Zukrigl 1973) Willner & Zukrigl 1999 in the Julian Alps. Razprave 4 razreda SAZU, Historia naturalis. Classis 4 47(1):117–192Google Scholar
  13. de Bello F, Lepš J, Sebastia M-T (2005) Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J Appl Ecol 42(5):824–833CrossRefGoogle Scholar
  14. Diaci J (1994) Spreminjanje naravne gozdne vegetacije ob višinskem gradientu Veže - Dleskovške planote v Savinjskih Alpah. Zbornik gozdarstva in lesarstva 44:45–84Google Scholar
  15. Díaz Barradas MC, Zunzunegui M, Tirado R, Ain-Lhout F, García Novo F (1999) Plant functional types and ecosystem function in Mediterranean shrubland. J Veg Sci 10(5):709–716. doi:10.2307/3237085 CrossRefGoogle Scholar
  16. Diaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8(4):463–474CrossRefGoogle Scholar
  17. Diaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655CrossRefGoogle Scholar
  18. Díaz S, Cabido M, Zak M, Martínez Carretero E, Araníbar J (1999) Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. J Veg Sci 10(5):651–660CrossRefGoogle Scholar
  19. Díaz S, Lavorel S, McIntyre SUE, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang WEI, Clark H, Campbell BD (2007) Plant trait responses to grazing—a global synthesis. Glob Change Biol 13(2):313–341. doi:10.1111/j.1365-2486.2006.01288.x CrossRefGoogle Scholar
  20. Duckworth JC, Kent M, Ramsay PM (2000) Plant functional types: an alternative to taxonomic plant community description in biogeography? Prog Phys Geogr 24(4):515–542. doi:10.1177/030913330002400403 Google Scholar
  21. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366. doi:10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2Google Scholar
  22. Eler K (2007) Vegetation characteristics in relation to different management regimes of calcareous grassland: a functional analysis using plant traits. Ph. D., University of Ljubljana, LjubljanaGoogle Scholar
  23. Eler K, Vidrih M, Batic F (2005) Vegetation characteristics in relation to different management regimes of calcareous grassland: a functional analysis using plant traits, vol 45. Berger, HornGoogle Scholar
  24. Firm D (2006) Development of high-mountain forests in the reserve Polšak. BSc, University of Ljubljana, Biotechnical faculty, Department of forestry and renewable forest resources, LjubljanaGoogle Scholar
  25. Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. J Ecol 88(6):964–977CrossRefGoogle Scholar
  26. Franklin J, Syphard AD, Mladenoff DJ, He HS, Simons DK, Martin RP, Deutschman D, O’Leary JF (2001) Simulating the effects of different fire regimes on plant functional groups in Southern California. Ecol Model 142(3):261–283CrossRefGoogle Scholar
  27. Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Leps J, Meier T, Pakeman R, Papadimitriou M, Papanastasis V, Quested H, Quetier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau J-P, Thebault A, Vile D, Zarovali M (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99(5):967–985PubMedCrossRefGoogle Scholar
  28. Gitay H, Noble IR (1997) What are functional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types. Cambridge University Press, Cambridge, pp 3–19. In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, pp 3–19Google Scholar
  29. Gitay H, Noble IR, Connell JH (1999) Deriving functional types for rain-forest trees. J Veg Sci 10(5):641–650. doi:10.2307/3237079 CrossRefGoogle Scholar
  30. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot Lond 90(4):537–544. doi:10.1093/Aob/Mcf222 CrossRefGoogle Scholar
  31. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111(982):1169–1194CrossRefGoogle Scholar
  32. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, New YorkGoogle Scholar
  33. Hobbie SE (2007) Arctic ecology. In: Functional plant ecology, 2 edn. Books in soils, plants, and the environment. CRC Press. doi:10.1201/9781420007626.ch12
  34. Hunt R, Hodgson JG, Thompson K, Bungener P, Dunnett NP, Askew AP, Bakker JP (2004) A new practical tool for deriving a functional signature for herbaceous vegetation. Appl Veg Sci 7(2):163–170. doi:10.1658/1402-2001(2004)007[0163:ANPTFD]2.0.CO;2CrossRefGoogle Scholar
  35. Kadunc A, Rugani T (1999) The upper timberline of Notranji Bohinj District (NW Slovenia). Gozdarski vestnik 57(1):23–33Google Scholar
  36. Kaligarič M, Šajna N, Škornik S (2005) Is variety of species-rich semi-natural Mesobromion grasslands detectable with functional approach? Ann Ser Hist Nat 15(2):239–248Google Scholar
  37. Kleyer M (1999) Distribution of plant functional types along gradients of disturbance intensity and resource supply in an agricultural landscape. J Veg Sci 10(5):697–708. doi:10.2307/3237084 CrossRefGoogle Scholar
  38. Klotz S, Kühn I, Durka W (2002) BIOLFLOR – Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Bundesamt für Naturschutz, BonnGoogle Scholar
  39. Knevel IC, Bekker RM, Bakker JP, Kleyer M (2003) Life-history traits of the Northwest European flora: the LEDA database. J Veg Sci 14(4):611–614CrossRefGoogle Scholar
  40. Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4):445–459CrossRefGoogle Scholar
  41. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystem, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  42. Kutnar L, Kobler A (2011) Prediction of forest vegetation shift due to different climate-change scenarios in Slovenia. Šumarski list 135(3–4):113–125Google Scholar
  43. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1):299–305. doi:10.1890/08-2244.1 PubMedCrossRefGoogle Scholar
  44. Landsberg J, Lavorel S, Stol J (1999) Grazing response groups among understorey plants in Arid Rangelands. J Veg Sci 10(5):683–696CrossRefGoogle Scholar
  45. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16(5):545–556CrossRefGoogle Scholar
  46. Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12(12):474–478PubMedCrossRefGoogle Scholar
  47. Lavorel S, Touzard B, Lebreton J-D, Clément B (1998) Identifying functional groups for response to disturbance in an abandoned pasture. Acta Oecologica 19(3):227–240CrossRefGoogle Scholar
  48. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  49. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808PubMedCrossRefGoogle Scholar
  50. Louault F, Pillar VD, Aufrère J, Garnier E, Soussana JF (2005) Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J Veg Sci 16(2):151–160. doi:10.1111/j.1654-1103.2005.tb02350.x CrossRefGoogle Scholar
  51. Martinčič A, Wraber T, Jogan N, Podobnik A, Ravnik V, Turk B, Vreš B, Frajman B, Strgulc-Krajšek S, Trčak B, Bačič T, Fischer MA, Eler K, Surina B (2007) Mala flora Slovenije: ključ za določanje praprotnic in semenk, 4th edn. Tehniška založba Slovenije, LjubljanaGoogle Scholar
  52. Mayer H, Ott E (1991) Gebirgswaldbau - Schutzwaldpflege: ein waldbaulicher Beitrag zur Landschaftsökologie und zum Umweltschutz, 2nd edn. Fischer, G., Stuttgart, New YorkGoogle Scholar
  53. McIntyre S, Lavorel S (2001) Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. J Ecol 89(2):209–226. doi:10.1046/j.1365-2745.2001.00535.x CrossRefGoogle Scholar
  54. McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol 83(1):31–44CrossRefGoogle Scholar
  55. McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999a) Disturbance response in vegetation—towards a global perspective on functional traits. J Veg Sci 10(5):621–630CrossRefGoogle Scholar
  56. McIntyre S, Díaz S, Lavorel S, Cramer W (1999b) Plant functional types and disturbance dynamics—introduction. J Veg Sci 10(5):603–608CrossRefGoogle Scholar
  57. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) vegan: community ecology package. R package version 1.17-6Google Scholar
  58. Pausas JG (1999) Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: a simulation approach. J Veg Sci 10(5):717–722. doi:10.2307/3237086 CrossRefGoogle Scholar
  59. Pausas J (2006) Simulating Mediterranean landscape pattern and vegetation dynamics under different fire regimes. Plant Ecol 187(2):249–259. doi:10.1007/s11258-006-9138-z CrossRefGoogle Scholar
  60. Pausas JG, Lavorel S (2003) A hierarchical deductive approach for functional types in disturbed ecosystems. J Veg Sci 14(3):409–416. doi:10.1111/j.1654-1103.2003.tb02166.x CrossRefGoogle Scholar
  61. Peco B, de Pablos I, Traba J, Levassor C (2005) The effect of grazing abandonment on species composition and functional traits: the case of dehesa grasslands. Basic Appl Ecol 6(2):175–183CrossRefGoogle Scholar
  62. Pillar VD (1999) On the identification of optimal plant functional types. J Veg Sci 10(5):631–640. doi:10.2307/3237078 CrossRefGoogle Scholar
  63. Počkar B, Stritih J (1987) Strategija rasti gozda na zgornji gozdni meji – primerjava med Dinaridi in Julijskimi Alpami. BSc, University of Ljubljana, Biotechnical faculty, Department of forestry and renewable forest resources, LjubljanaGoogle Scholar
  64. Poldini L, Oriolo G, Francescato C (2004) Mountain pine scrubs and heaths with Ericaceae in the south-eastern Alps. Plant Biosyst 138:53–85CrossRefGoogle Scholar
  65. Poschlod P, Kleyer M, Jackel A-K, Dannemann A, Tackenberg O (2003) BIOPOP—a database of plant traits and internet application for nature conservation. Folia Geobotanica 38(3):263–271. doi:10.1007/bf02803198 CrossRefGoogle Scholar
  66. Pristov J, Pristov N, Zupančič B (1998) Klima Triglavskega narodnega parka. Triglavski narodni park in Hidrometeorološki zavod RS, BledGoogle Scholar
  67. Raunkiær C, Gilbert-Carter H, Fausbøll A, Tansley AG (1934) The life forms of plants and statistical plant geography. The Clarendon Press, OxfordGoogle Scholar
  68. Roberts DW (2010) labdsv: ordination and multivariate analysis for ecology. R package version 1.4-1Google Scholar
  69. Skov F (2000) Distribution of plant functional attributes in a managed forest in relation to neighbourhood structure. Plant Ecol 146(2):121–130CrossRefGoogle Scholar
  70. Smith TM, Shugart HH, Woodward FI (1997) Plant functional types: their relevance to ecosystem properties and global change. International geosphere-biosphere programme book series. Cambridge University Press, CambridgeGoogle Scholar
  71. Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27(8):1047–1054. doi:10.1111/j.1365-3040.2004.01209.x CrossRefGoogle Scholar
  72. Team RDC (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  73. Thuiller W, Lavorel S, Midgley GUY, Lavergne S, Rebelo T (2004) Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85(6):1688–1699CrossRefGoogle Scholar
  74. Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special reference to the European Alps, vol 31. Ecological StudiesGoogle Scholar
  75. van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39(2):97–114CrossRefGoogle Scholar
  76. van der Maarel E (2005) Vegetation ecology—an overview. In: Evd Maarel (ed) Vegetation ecology. Blackwell Publishing, Malden, pp 1–51Google Scholar
  77. Vandvik V, Birks HJB (2002) Pattern and process in Norwegian upland grasslands: a functional analysis. J Veg Sci 13(1):123–134. doi:10.1111/j.1654-1103.2002.tb02029.x CrossRefGoogle Scholar
  78. Verheyen K, Honnay O, Motzkin G, Hermy M, Foster DR (2003) Response of forest plant species to land-use change: a life-history trait-based approach. J Ecol 91:563–577CrossRefGoogle Scholar
  79. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10(5):609–620. doi:10.2307/3237076 CrossRefGoogle Scholar
  80. Westhoff V, Evd Maarel (1973) The Braun-Blanquet approach. In: Whittaker RH (ed) Ordination and classification of communities. Handbook of vegetation science, 5, vol 5. Dr. W. Junk, The Hague, pp 619–726Google Scholar
  81. Wieser G, Tausz M (eds) (2007) Trees at their upper limit, treelife limitation at the alpine timberline, vol 5. Plant ecophysiology, vol 5. University of Groningen, DordrechtGoogle Scholar
  82. Woodward FI, Cramer W (1996) Plant functional types and climatic change: introduction. J Veg Sci 7(3):306–308. doi:10.1111/j.1654-1103.1996.tb00489.x CrossRefGoogle Scholar
  83. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428(6985):821–827PubMedCrossRefGoogle Scholar
  84. Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166(2):485–496. doi:10.1111/j.1469-8137.2005.01349.x PubMedCrossRefGoogle Scholar
  85. Yan B, Zhang J, Liu Y, Li Z, Huang X, Yang W, Prinzing A (2012) Trait assembly of woody plants in communities across sub-alpine gradients: identifying the role of limiting similarity. J Veg Sci 23(4):698–708. doi:10.1111/j.1654-1103.2011.01384.x CrossRefGoogle Scholar
  86. Zupančič M, Žagar V, Culiberg M (2006) Slovene Alpine Pinus mugo scrub in comparison with European Pinus mugo scrub (Rhodothamno-Rhododendretum hirsuti var. geogr. Paederota lutea). Academia Scientiarum et Artium Slovenica, Classis IV: Historia naturalis, Opera 40, LjubljanaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Forestry and Renewable Forest Resources, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Agronomy, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations