European Journal of Forest Research

, Volume 132, Issue 3, pp 453–465

The “sun-effect”: microclimatic alterations predispose forest edges to bark beetle infestations

Original Paper

Abstract

Bark beetle dispersal and host selection behaviour are a complex and poorly understood process, resulting in specific spatio-temporal infestation patterns in forests. Aerial images from the Bavarian Forest National Park (Germany) provide a high-resolution, that is, tree-scale data set for the period 2001–2010, including information about Ips typographus (Col., Curculio., Scolytinae) infestation, the application of sanitary logging, natural forest edges and the area of living spruce susceptible to bark beetle infestation. We combined methods of GIS and image analysis to investigate the infestation probabilities at three types of forest edges under spatial and temporal aspects and compared them to the corresponding probabilities at the stand interior. Our results showed a pronounced infestation predisposition of such edge trees delimiting infestation patches cleared by sanitary logging measures, in particular at the south-facing edge sector. In contrast, edges adjacent to non-cleared infestation were revealed as less attractive for subsequent infestations, but nonetheless more attractive than permanent forest edges or the stand interior. Additionally, we measured near-bark surface air temperature to determine microclimatic differences at those edge- or non-edge sites and related them to predisposition results. Finally, our study emphasized favourable microclimatic conditions—summarized as the “sun-effect”—as a decisive factor enhancing the local infestation probability at recent forest edges in multiple ways. Both insect- and host tree-related reactions to suddenly altered microclimate are supposed to bias arbitrary colonization behaviour at patch and tree level, thereby mainly explaining observed infestation patterns. From the forester’s point of view, our results may contribute to precise bark beetle risk assessment and thus facilitate decision making in forest management.

Keywords

Ips typographus Host selection Infestation probability Sanitary logging Edge orientation Image processing Spatial analysis 

References

  1. Akkuzu E, Sariyildiz T, Kucuk M, Duman A (2009) Ips typographus (L.) and Thanasimus formicarius (L.) populations influenced by aspect and slope position in Artvin-Hatila valley national park. Turkey. Afr J Biotechnol 8:877–882Google Scholar
  2. Annila E (1969) Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera, Scolytidae). Ann Zool Fenn 6:161–208Google Scholar
  3. Baier P, Bader R (1997) Monoterpene content and monoterpene emission of Norway spruce bark and their relation to the primary attraction of bark beetles (Coleoptera, Scolytidae). Mitt Dtsch Ges Allg Angew Ent 11:639–643Google Scholar
  4. Baier P, Pennerstorfer J, Schopf A (2007) PHENIPS—a comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. Forest Ecol Manag 249:171–186. doi:10.1016/j.foreco.2007.05.020
  5. Bolstad PV, Bentz BJ, Logan JA (1997) Modelling micro-habitat temperature for Dendroctonus ponderosae (coleopteran: scolytidae). Ecol Model 94:287–297. doi:10.1016/S0304-3800(96)00021-x Google Scholar
  6. Christiansen E, Bakke A (1997) Does drought really enhance Ips typographus epidemics?—A Scandinavian perspective. In: Grégoire JC, Liebhold AM, Stephen FM, Day KR, Salom SM (eds) Proceedings of the integrating cultural tactics into management of bark beetle and reforestation pests. USDA Forest Service, GTR-NE-236, pp 163–171Google Scholar
  7. Christiansen E, Waring RH, Berryman AA (1987) Resistance of conifers to bark beetle attack: searching for general relationships. Forest Ecol Manag 22:89–106. doi:10.1016/0378-1127(87)90098-3 CrossRefGoogle Scholar
  8. Coeln M, Niu Y, Führer E (1996) Temperature-related development of spruce bark beetles in montane forest formations (Coleoptera: Scolytidae). Entomol Gener 21:37–54Google Scholar
  9. Doležal P, Sehnal F (2007) Effects of photoperiod and temperature on the development and diapause of the bark beetle Ips typographus. J Appl Entomol 131:165–173. doi:10.1111/j.1439-0418.2006.01123.x CrossRefGoogle Scholar
  10. Eidmann HH (1992) Impact of bark beetles on forests and forestry in Sweden. J Appl Entomol 114:193–200. doi:10.1111/j.1439-0418.1992.tb01114.x Google Scholar
  11. Escherich K (1923) Die Forstinsekten Mitteleuropas, vol 2. Parey, BerlinGoogle Scholar
  12. Faccoli M (2009) Effect of weather on Ips typographus (Coleoptera Curculionidae) phenology, voltinism, and associated spruce mortality in the southeastern Alps. Environ Entomol 38:307–316. doi:10.1603/022.038.0202 Google Scholar
  13. Fettig CJ, Klepzig KD, Billings RF, Munson AS, Nebeker TE, Negrón JF, Nowak JT (2007) The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. Forest Ecol Manag 238:24–53. doi:10.1016/j.foreco.2006.10.011 CrossRefGoogle Scholar
  14. Filella I, Wilkinson MJ, Llusià J, Hewitt N, Peñuelas J (2007) Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes. Physiol Plantarum 130:58–66. doi:10.1111/j.1399-3054.2007.00881.x Google Scholar
  15. Fischer A, Lindner M, Abs C, Lasch P (2002) Vegetation dynamics in central European forest ecosystems (near-natural as well as managed) after storm events. Folia Geobot 37:17–32CrossRefGoogle Scholar
  16. Fraunhofer ITWM (2011) MAVIlib—modular algorithms for volume images, C++ library. http://www.mavi-3d.de
  17. Führer E, Lindenthal J, Baier P (1997) Tree mortality in Norway spruce: relations between the premortal tree vigour dynamics and the attack by pleophagous insects. Mitt Dtsch Ges Allg Angew Ent 11:645–648Google Scholar
  18. Grabmer W, Kreuzwieser J, Wisthaler A, Cojocariu C, Graus M, Rennenberg H, Steigner D, Steinbrecher R, Hansel A (2006) VOC emissions from Norway spruce (Picea abies L. [Karst]) twigs in the field—results of a dynamic enclosure study. Atmos Environ 40:128–137. doi:10.1016/j.atmosenv.2006.03.043 Google Scholar
  19. Grodzki W (2004) Some reactions of Ips typographus (L.) (Col.: Scolytidae) to changing breeding conditions in a forest decline area in the Sudeten Mountains. Poland. J Pest Sci 77:43–48. doi:10.1007/s10340-003-0026-1
  20. Grodzki W, Jakuš R, Lajzová E, Sitková Z, Maczka T, Škvarenina J (2006) Effects of intensive versus no management strategies during an outbreak of the bark beetle Ips typographus (L.) (Col.: Curculionidae), Scolytinae) in the Tatra Mts. in Poland and Slovakia. Ann For Sci 63:55–61. doi:10.1051/forest:2005097 CrossRefGoogle Scholar
  21. Häberle K-H, Nunn AJ, Reiter IM, Werner H, Heller W, Bahnweg G, Gayler S, Lütz C, Matyssek R (2009) Variation of defence-related metabolites in the foliage of adult beech and spruce: a conceptual approach to approximating traded-off carbon. Eur J Forest Res 128:99–108. doi:10.1007/s10342-008-0220-z CrossRefGoogle Scholar
  22. Hais M, Kučera T (2008) Surface temperature change of spruce forest as a result of bark beetle attack: remote sensing and GIS approach. Eur J Forest Res 127:327–336. doi:10.1007/s10342-008-0208-8 CrossRefGoogle Scholar
  23. Hedgren PO, Schroeder LM, Weslien J (2003) Tree killing by Ips typographus (Coleoptera: Scolytidae) at stand edges with and without colonized felled spruce trees. Agric For Entomol 5:67–74. doi:10.1046/j.1461-9563.2003.00164.x Google Scholar
  24. Heurich M, Ochs T, Andresen T, Schneider T (2010) Object-oriented image analysis for the semi-automatic detection of dead trees following a spruce bark beetle (Ips typographus) outbreak. Eur J Forest Res 129:313–324. doi:10.1007/s10342-009-0331-1 CrossRefGoogle Scholar
  25. Hietz P, Baier P, Offenthaler I, Führer E, Rosner S, Richter H (2005) Tree temperatures, volatile organic emissions, and primary attraction of bark beetles. Phyton 45:341–354Google Scholar
  26. Jactel H, Nicoll BC, Branco M, Gonzalez-Olabarria JR, Grodzki W, Långström B, Moreira F, Netherer S, Orazio C, Piou D, Santos H, Schelhaas MJ, Tojic K, Vodde F (2009) The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci 66:701. doi:10.1051/forest/2009054 CrossRefGoogle Scholar
  27. Jactel H, Petit J, Desprez-Loustau M-L, Delzon S, Piou D, Battisti A, Koricheva J (2012) Drought effects on damage by forest insects and pathogens: a meta-analysis. Global Change Biol 18:267–276. doi:10.1111/j.1365-2486.2011.02512.x CrossRefGoogle Scholar
  28. Jähne B, Scharr H, Körkel S (1999) Principles of filter design. In: Jähne B, Haußecker H, Geißler P (eds) Handbook of computer vision and applications, vol 2. Academic Press, London, pp 125–151 (ISBN 0-12-379772-1)Google Scholar
  29. Jakuš R, Grodzki W, Ježik M, Jachym M (2003) Definition of spatial patterns of bark beetle Ips typographus (L.) outbreak spreading in Tatra Mountains (Central Europe), using GIS. In: McManus ML, Liebhold AM (eds) Proceedings of the ecology, survey and management of forest insects. USDA Forest Service, GTR-NE-311, pp 25–32Google Scholar
  30. Jakuš R, Edwards-Jonášová M, Cudlín P, Blaženec M, Ježik M, Havlíček F, Moravec I (2011) Characteristics of Norway spruce trees (Picea abies) surviving a spruce bark beetle (Ips typographus L.) outbreak. Trees 25:965–973. doi:10.1007/s00468-011-0571-9 CrossRefGoogle Scholar
  31. Jakuš R, Zajíčkova L, Cudlín P, Blaženec M, Turčani M, Ježik M, Lieutier F, Schlyter F (2010) Landscape-scale Ips typographus attack dynamics: from monitoring plots to GIS-based disturbance models. iForest 4:256–261. doi:10.3832/ifor0589-004 Google Scholar
  32. Kausrud K, Økland B, Skarpaas O, Grégoire J-C, Erbilgin N, Stenseth NC (2012) Population dynamics in changing environments: the case of an eruptive forest pest species. Biol Rev 87:34–51. doi:10.1111/j.1469-185X.2011.00183.x PubMedCrossRefGoogle Scholar
  33. Kautz M, Dworschak K, Gruppe A, Schopf R (2011a) Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. Forest Ecol Manag 262:598–608. doi:10.1016/j.foreco.2011.04.023 CrossRefGoogle Scholar
  34. Kautz M, Düll J, Ohser J (2011b) Spatial dependence of random sets and its application to dispersion of bark beetle infestation in a natural forest. Image Anal Stereol 30:123–131. doi:10.5566/ias.v30.p123-131 CrossRefGoogle Scholar
  35. Kennedy JS (1965) Mechanisms of host plant selection. Ann Appl Biol 56:317–322. doi:10.1111/j.1744-7348.1965.tb01242.x CrossRefGoogle Scholar
  36. Kogan M (1994) Plant resistance in pest management. In: Metcalf RL, Luckmann WH (eds) Introduction to insect pest management, 3rd edn. Wiley, New York, pp 73–128Google Scholar
  37. Komonen A, Schroeder LM, Weslien J (2011) Ips typographus population development after a severe storm in a nature reserve in southern Sweden. J Appl Entomol 135:132–141. doi:10.1111/j.1439-0418.2010.01520.x
  38. Koricheva J, Larsson S, Haukioja E (1998) Insect performance on experimentally stressed woody plants: a meta-analysis. Annu Rev Entomol 43:195–216PubMedCrossRefGoogle Scholar
  39. Laffineur Q, Aubinet M, Schoon N, Amelynck C, Müller J-F, Dewulf J, Van Langenhove H, Steppe K, Šimpraga M, Heinesch B (2011) Isoprene and monoterpene emissions from a mixed temperate forest. Atmos Environ 45:3157–3168. doi:10.1016/j.atmosenv.2011.02.054 Google Scholar
  40. Lausch A, Fahse L, Heurich M (2011) Factors affecting the spatio-temporal dispersal of Ips typographus (L.) in Bavarian Forest National Park: a long-term quantitative landscape-level analysis. Forest Ecol Manag 261:233–245. doi:10.1016/j.foreco.2010.10.012
  41. Lobinger G (1994) Air temperature as a limiting factor for flight activity of two species of pine bark beetles, Ips typographus L. and Pityogenes chalcographus L. (Col., Scolytidae). Anz Schädlingskd Pfl 67:14–17. doi:10.1007/BF01906563 CrossRefGoogle Scholar
  42. Lobinger G, Skatulla U (1996) Influencing the flight behaviour of bark beetles by light conditions. Anz Schädlingskd Pfl 69:183–185. doi:10.1007/BF01908442
  43. Matlack GR (1994) Vegetation dynamics of the forest edge—trends in space and successional time. Ecology 82:113–123. doi:10.2307/2261391 Google Scholar
  44. Mezei P, Jakuš R, Blažnec M, Belánová S, Šmídt J (2011) Population dynamics of spruce bark beetle in a nature reserve in relation to stand edge conditions. Folia Oecol 38:73–79Google Scholar
  45. Müller J, Bussler H, Gossner M, Gruppe A, Jarzabek-Müller A, Preis M, Rettelbach T (2007) Forest edges in the mixed-montane zone of the Bavarian Forest National Park—hot spots of biodiversity. Silva Gabreta 13:121–148Google Scholar
  46. Mulock P, Christiansen E (1986) The threshold of successful attack by Ips typographus on Picea abies: a field experiment. Forest Ecol Manag 14:125–132. doi:10.1016/0378-1127(86)90097-6
  47. Murcia C (1995) Edge effects in fragmented forests: implication for conservation. Trends Ecol Evol 10:58–62. doi:10.1016/S0169-5347(00)88977-6 Google Scholar
  48. Nef L (1990) Within- and between-trees variability of the attacks of Ips typographus L. (Col., Scolytidae) on the Norway spruce. J Appl Entomol 110:516–523. doi:10.1111/j.1439-0418.1990.tb00151.x
  49. Nelson WA, Lewis MA (2008) Connecting host physiology to host resistance in the conifer-bark beetle system. Theor Ecol 1:163–177. doi:10.1007/s12080-008-0017-1 CrossRefGoogle Scholar
  50. Netherer S, Nopp-Mayr U (2005) Predisposition assessment systems (PAS) as supportive tools in forest management—rating of site and stand-related hazards of bark beetle infestation in the High Tatra Mountains as an example of system application and verification. Forest Ecol Manag 207:99–107. doi:10.1016/j.foreco.2004.10.020 CrossRefGoogle Scholar
  51. Ohser J, Schladitz K (2009) 3D images of materials structures—processing and analysis. Wiley, Weinheim. ISBN 978-3-527-31203-0CrossRefGoogle Scholar
  52. Peltonen M (1999) Windthrows and dead-standing trees as bark beetle breeding material at forest-clearcut edges. Scand J Forest Res 14:505–511Google Scholar
  53. Powell JM (1967) A study of habitat temperatures of the bark beetle Dendroctonus ponderosae Hopkins in Lodgepole pine. Agr Meteorol 4:189–201CrossRefGoogle Scholar
  54. Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517. doi:10.1641/B580607 Google Scholar
  55. Rall H, Martin K (2002) Luftbildauswertung zur Waldentwicklung im Nationalpark Bayerischer Wald 2001. Berichte aus dem Nationalpark 1. Administration of Bavarian Forest NP, GrafenauGoogle Scholar
  56. Ravn HP (1985) Expansion of the populations of Ips typographus (L.) (Coleoptera, Scolytidae) and their local dispersal following gale disaster in Denmark. J Appl Entomol 99:26–33. doi:10.1111/j.1439-0418.1985.tb01955.x
  57. Reeve JD, Ayres MP, Lorio PL Jr (1995) Host suitability, predation, and bark beetle population dynamics. In: Cappaccino N, Price PW (eds) Population dynamics: new approaches and synthesis. Academic Press, San Diego, pp 339–357CrossRefGoogle Scholar
  58. Robertson C, Nelson TA, Boots B (2007) Mountain pine beetle dispersal: the spatial-temporal interaction of infestations. Forest Sci 53:395–405Google Scholar
  59. Scharr H (2007) Optimal filters for extended optical flow. In: Jähne B, Mester R, Barth E, Scharr H (eds) IWCM 2004. Lecture Notes in Computer Science, vol 3417. Springer, Heidelberg, pp 14–29. doi:10.1007/978-3-540-69866-1_2
  60. Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633. doi:10.1046/j.1529-8817.2003.00684.x CrossRefGoogle Scholar
  61. Schmid JM, Mata SA, Schmidt RA (1991) Bark temperature patterns in ponderosa pine stands and their possible effects on mountain pine beetle behavior. Can J Forest Res 21:1439–1446CrossRefGoogle Scholar
  62. Schmid JM, Mata SA, Schmidt RA (1992) Bark temperature patterns in mountain pine beetle susceptible stands of lodgepole pine in the central Rockies. Can J Forest Res 22:1669–1675CrossRefGoogle Scholar
  63. Schopf R, Köhler U (1995) Untersuchungen zur Populationsdynamik der Fichtenborkenkäfer im Nationalpark Bayerischer Wald. In: Administration Bavarian Forest NP (ed) Nationalpark Bayerischer Wald—25 Jahre auf dem Weg zum Naturwald. Grafenau, pp 88–109Google Scholar
  64. Schroeder LM, Lindelöw A (2002) Attacks on living spruce trees by the bark beetle Ips typographus (Col. Scolytidae) following a storm-felling: a comparison between stands with and without removal of wind-felled trees. Agric For Entomol 4:47–56. doi:10.1046/j.1461-9563.2002.00122.x
  65. Thalenhorst W (1958) Grundzüge der Populationsdynamik des großen Fichtenborkenkäfers Ips typographus L.. Schr. Forstl Fak Univ Gött Niedersächs Forstl Vers Anst 21, 126 pGoogle Scholar
  66. Turčani M, Nakládal O (2007) The results of manipulated experiments with inoculation of Ips typographus (L., 1758) to spruce trees under various levels of water stress. J For Sci 53:25–30Google Scholar
  67. Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus - a review of recent research. Forest Ecol Manag 202:67–82. doi:10.1016/j.foreco.2004.07.018
  68. Wermelinger B, Seifert M (1998) Analysis of the temperature dependent development of the spruce bark beetle Ips typographus (L.) (Col., Scolytidae). J Appl Entomol 122:185–191. doi:10.1111/j.1439-0418.1998.tb01482.x
  69. Wermelinger B, Seifert M (1999) Temperature-dependent reproduction of the spruce bark beetle Ips typographus, and analysis of the potential population growth. Ecol Entomol 24:103–110. doi:10.1046/j.1365-2311.1999.00175.x Google Scholar
  70. Wichmann L, Ravn HP (2001) The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. Forest Ecol Manag 148:31–39. doi:10.1016/S0378-1127(00)00477-1
  71. Wood DL (1982) The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annu Rev Entomol 27:411–446. doi:10.1146/annurev.en.27.010182.002211

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Ecology and Ecosystem Management, Institute of Animal EcologyTechnische Universität MünchenFreisingGermany
  2. 2.Department of Mathematics and Natural SciencesHochschule DarmstadtDarmstadtGermany

Personalised recommendations