European Journal of Forest Research

, Volume 132, Issue 2, pp 363–377 | Cite as

Canopy fuel characteristics in relation to crown fire potential in pine stands: analysis, modelling and classification

  • José María Fernández-Alonso
  • Iciar Alberdi
  • Juan Gabriel Álvarez-González
  • José Antonio Vega
  • Isabel Cañellas
  • Ana Daría Ruiz-González
Original Paper


Crown fire occurrence and subsequent crown fire behaviour are strongly dependent on canopy fuel characteristics, especially canopy fuel load (CFL), canopy bulk density (CBD) and canopy base height (CBH). Therefore, quantification of such variables is required for the appropriate selection of silvicultural treatments aimed at reducing susceptibility to crown fire. Data from the IV Spanish National Forest Inventory and individual tree biomass dry weight equations were used to estimate the canopy fuel characteristics of four representative types of pine stands in north-western Spain. Probability of crown fire initiation and crown fire rate of spread were simulated by using the mean surface fuel load observed for each type of pine in this area and assuming different burning conditions. The results indicate that a 22.13 % of the sample plots analysed showed a rather high potential for active crown fire spread under moderate burning conditions, and this value increases to 69.27 % under extreme burning conditions. Equations relating the canopy fuel characteristics to common stand variables (stand density, basal area and dominant height) were fitted simultaneously for each pine, and weighting factors for heteroscedasticity were included. The models explained more than 93.90, 74.70 and 69.42 % of the observed variability in CFL, CBD and CBH, respectively. Basal area was the most important variable for estimating CFL and CBD while dominant height explained most of the observed variability in CBH. The use of the fitted equations together with existing dynamic growth models and fire management decision support systems will enable assessment of the crown fire potential associated with different silvicultural alternatives used in these types of pine stands.


Canopy fuel load Canopy bulk density Canopy base height Crown fire simulations CART Allometric models 



This research was initiated during a research visit by Juan Gabriel Álvarez-González to the Forestry Research Centre (INIA-CIFOR), with financial support from the “Programa Nacional de Movilidad de Recursos Humanos de Investigación de 2010” (REF: PR2010-0467. PN I + D + i 2008–2011). The research was funded by the AEG-09-007 agreement between the Spanish Ministry of Agriculture and INIA and by the Project RTA2009-0153-C03-01. We would also like to thank the two anonymous reviewers whose comments helped to substantially improve this manuscript.


  1. Agee J (1996) The influence of forest structure on fire behaviour. Proceedings of the 17th annual forest vegetation management conference, Redding, CA, USA, 16–18 Jan, pp 52–68Google Scholar
  2. Alberdi I, Condés S, Millán JM, Saura S, Sánchez G, Pérez F, Villanueva JA, Vallejo R (2010) National forest inventories report, Spain (Chapter 34). In: Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) National forest inventories. Pathways for common reporting. Springer, Berlin, pp 527–540Google Scholar
  3. Alexander ME, Cruz MG (2011) Crown fire dynamics in conifer forests. In: Werth PA, Potter BE, Clements CB, Finney MA, Goodrick SL, Alexander ME, Cruz MG, Forthofer JA, McAllister SS (eds) Synthesis of knowledge of extreme fire behavior: volume I for fire managers. Department of Agriculture, Forest Service, Pacific Northwest Research Station. General Technical Report PNW-GTR-854Google Scholar
  4. Alexander ME, Stefner CN, Mason JA, Stocks BJ, Hartley GR, Maffey ME et al (2004) Characterizing the jack pine-black spruce fuel complex of the International Crown Fire Modelling Experiment (ICFME). Natural Resources Canada, Forestry Service, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-393Google Scholar
  5. Alexander ME, Cruz MG, Lopes AMG (2006) CFIS: a software tool for simulating crown fire initiation and spread. In: Viegas DX (ed) Proceedings of V international conference on forest fire research, Elsevier, Meppel, Netherlands [CD-ROM]Google Scholar
  6. Alvarez A, Gracia M, Vayreda J, Retana J (2012) Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For Ecol Manag 270:282–290CrossRefGoogle Scholar
  7. Andrews PL (2008) BehavePlus fire modeling system, version 4.0: variables. General Technical Report RMRS-GTR-213WWW. Fort Collins, CO: Department of Agriculture, Forest Service. Rocky Mountain Research StationGoogle Scholar
  8. Arellano Pérez S (2011) Modelos de combustibles forestales de Galicia. MD. Thesis, University of Santiago de Compostela, Lugo, SpainGoogle Scholar
  9. Belsey DA (1991) Conditioning diagnostics, collinearity and weak data in regression. Wiley, New YorkGoogle Scholar
  10. Beukema SJ, Greenough DC, Robinson CE, Kurtz WA, Reinhardt ED, Crookston NL et al (1997) An introduction to the fire and fuels extension to FVS. In: Teck R, Mouer M, Adams J (eds) Proceedings of the forest vegetation simulator conference. USDA Forest Service, Intermountain Research Station. General Technical Report. INT-373, Ogden, UT, pp 191–195Google Scholar
  11. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman & Hall, New YorkGoogle Scholar
  12. Brown JK, Bradshaw LS (1994) Comparisons of particulate emissions and smoke impacts from presettlement, full suppression and prescribed natural fire periods in the Selway-Bitterroot Wilderness. Int J Wildland Fire 4(3):143–155CrossRefGoogle Scholar
  13. Brown JK, Reinhardt ED (1991) Predicting and managing fuel consumption in the Interior West. In: Andrews PL, Potts DL (eds) Proceedings of the 11th conference on fire and forest meteorology. Society of American Foresters Publication 91-04, pp 419–429Google Scholar
  14. Cailliez F (1980) Estimación del volumen forestal y predicción del rendimiento. Vol 2. Predicción del rendimiento. Estudio FAO 22/2, RomaGoogle Scholar
  15. Call PT, Albini FA (1997) Aerial and surface fuel consumption in crown fires. Int J Wildland Fire 7(3):259–264CrossRefGoogle Scholar
  16. Crecente-Campo F, Pommerening A, Rodríguez-Soalleiro R (2009) Impacts of thinning on structure, growth and risk of crown fire in a Pinus sylvestris L. plantation in northern Spain. For Ecol Manag 257:1945–1954CrossRefGoogle Scholar
  17. Cronan J, Jandt R (2008) How succession affects fire behaviour in boreal black spruce forest of interior Alaska. USDI Bureau of Land management, Alaska State Office, BLM-Alaska Technical Report 59Google Scholar
  18. Cruz MG, Alexander ME (2010) Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies. Int J Wildland Fire 19:377–398CrossRefGoogle Scholar
  19. Cruz MG, Alexander ME, Wakimoto RH (2003) Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int J Wildland Fire 12:39–50CrossRefGoogle Scholar
  20. Cruz MG, Alexander ME, Wakimoto RH (2004) Modelling the likelihood of crown fire occurrence in conifer forest stands. For Sci 50(5):640–658Google Scholar
  21. Cruz MG, Alexander ME, Wakimoto RH (2005) Development and testing of models for predicting crown fire rate of spread in conifer forest stands. Can J For Res 35:1626–1639CrossRefGoogle Scholar
  22. Cruz MG, Fernandes PM, Alexander ME (2007) Development of a model system to predict wildfire behaviour in pine plantations. Programme, abstracts & papers of the 2007 Institute of Foresters of Australia and New Zealand Institute of Forestry Conference, Coffs Harbour (Australia), 3–7 June, pp 119–128Google Scholar
  23. Cruz MG, Alexander ME, Fernandes PM (2008) Development of a model system to predict wildfire behaviour in pine plantations. Aust For 71(2):113–121Google Scholar
  24. Diéguez-Aranda U, Rojo Alboreca A, Castedo-Dorado F, Álvarez González JG, Barrio-Anta M, Crecente-Campo F, et al (2009) Herramientas selvícolas para la gestión forestal sostenible en Galicia. Consellería do Medio Rural, Xunta de GaliciaGoogle Scholar
  25. Fernandes PM (2009a) Examining fuel treatment longevity through experimental and simulated surface fire behaviour: a maritime pine case study. Can J For Res 39:2529–2535CrossRefGoogle Scholar
  26. Fernandes PM (2009b) Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann For Sci 66:415. doi: 10.1051/forest/2009013 CrossRefGoogle Scholar
  27. Finney MA (1998) FARSITE: fire area simulator-model development and evaluation. USDA Forest Service Research Paper RMRS-RP-4Google Scholar
  28. French NHF, De Groot W, Jenkins LK, Rogers BM, Alvarado E, Amiro B, de Jong B, Goetz S, Hoy E, Hyer E, Keane R, Law BE, McKenzie D, McNulty SG, Ottmar R, Pérez-Salicrup DR, Randerson J, Robertson KM, Turetsky M (2011) Model comparisons for estimating carbon emissions from North American wildland fire. J Geophys Res 116:G00K05 doi: 10.1029/2010JG001469 Google Scholar
  29. González JR, Palahí M, Trasobares A, Pukkala T (2006) A fire probability model for forest stands in Catalonia (north-east Spain). Ann For Sci 63:169–176CrossRefGoogle Scholar
  30. Harvey AC (1976) Estimating regression models with multiplicative heterocedasticity. Econometrica 44:461–465CrossRefGoogle Scholar
  31. Keyser T, Smith FW (2010) Influence of crown biomass estimators and distribution on canopy fuel characteristics in ponderosa pine stands of the Black Hills. For Sci 56(2):156–165Google Scholar
  32. López-Sánchez C, Rodríguez-Soalleiro R (2009) A density management diagram including stand stability and crown fire risk for Pseudotsuga menziesii (Mirb.) Franco in Spain. Mt Res Dev 29:169–176CrossRefGoogle Scholar
  33. MARM (2010) Anuario de estadística. Ministerio de Medio Ambiente y Medio Rural y Marino, MadridGoogle Scholar
  34. MARM (2011) Cuarto Inventario Forestal Nacional. Comunidad Autónoma de Galicia (ed) Dirección General del Medio Natural y Política ForestalGoogle Scholar
  35. Mitsopoulos ID, Dimitrakopoulos AP (2007) Canopy fuel characteristics and potential crown FIRE behavior in Aleppo pine (Pinus halepensis Mill.) forests. Ann For Sci 64:287–299CrossRefGoogle Scholar
  36. Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de biomasa y fijación de CO2 por los bosques españoles. Monografías INIA, Serie Forestal, nº 13Google Scholar
  37. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  38. Reinhardt ED, Keane RE, Brown JK (1997) First order fire effects model: FOFEM 4.0, user′s guide. General Technical Report. INT-344. Ogden, UT: USDA Forest Service, Intermountain Research StationGoogle Scholar
  39. Reinhardt ED, Lutes D, Scott J (2006a) FuelCalc: a METHOD for estimating fuel characteristics. In: Andrews PL, Butler BW (eds) Fuels management-how to measure success: conference proceedings. USDA Forest Service Rocky Mountain Research Station RMRS-P-41, pp 273–282Google Scholar
  40. Reinhardt ED, Scott J, Gray K, Keane R (2006b) Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements. Can J For Res 36:2803–2814CrossRefGoogle Scholar
  41. Ruiz-González AD (2007) Efecto de las claras sobre la humedad de los combustibles muertos en masas de pino. Proceedings of the 4th international wildland fire conference, Sevilla (Spain), May 13–17. Accessed 7 Feb 2011
  42. Ruiz-González AD, Álvarez-González JG (2011) Canopy bulk density and canopy base height equations for assessing crown fire hazard in Pinus radiata plantations. Can J For Res 41:839–850CrossRefGoogle Scholar
  43. Sando RW, Wick CH (1972) A method of evaluating crown fuels in forest stands. USDA Forest Service. Research paper NC-84Google Scholar
  44. SAS Institute Inc (2004) SAS/ETS® 9.1 user’s guide. SAS Institute Inc, Cary, NCGoogle Scholar
  45. Scott JH, Reinhardt ED (2001) Assessing crown fire potential by linking models of surface and crown fire behavior. USDA Forest Service. Rocky Mountain Research Station. Research Paper RMRS-RP-29Google Scholar
  46. Scott JH, Reinhardt ED (2007) Effects of alternative treatments on canopy fuel characteristics in five conifer stands. In: Powers RF (ed) Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop. USDA Forest Service Pacific Southwest Research Station GTR-203, pp 193–209Google Scholar
  47. SECF (2010) Informe 2010. Situación de los bosques y del sector forestal en España. Accessed 24 Oct 2011
  48. Therneau TM, Atkinson B (2012) Package rpart. Version 3.1-52. Accessed 12 March 2012
  49. Van Wagner CE (1977) Conditions for the start and spread of crown fire. Can J For Res 7:23–34CrossRefGoogle Scholar
  50. White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4):817–838CrossRefGoogle Scholar
  51. Williams DF (1978) Fuel properties before and after thinning in young radiata pine plantations. Fire Management Branch. Department of Conservation and Environment. Research Report 3Google Scholar
  52. WWF/Adena (2005) Incendios forestales ¿por qué se queman los montes españoles? Accessed 8 June 2008

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • José María Fernández-Alonso
    • 1
  • Iciar Alberdi
    • 2
  • Juan Gabriel Álvarez-González
    • 3
  • José Antonio Vega
    • 1
  • Isabel Cañellas
    • 2
  • Ana Daría Ruiz-González
    • 3
  1. 1.Centro de Investigación Forestal de LourizánPontevedraSpain
  2. 2.INIA-CIFOR, DptoSelvicultura y Gestión de los Sistema ForestalesMadridSpain
  3. 3.Departamento de Ingeniería Agroforestal, Escuela Politécnica SuperiorUniversidad de Santiago de CompostelaLugoSpain

Personalised recommendations