European Journal of Forest Research

, Volume 132, Issue 2, pp 263–280 | Cite as

Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient

  • Hans PretzschEmail author
  • Kamil Bielak
  • Joachim Block
  • Arkadiusz Bruchwald
  • Jochen Dieler
  • Hans-Peter Ehrhart
  • Ulrich Kohnle
  • Jürgen Nagel
  • Hermann Spellmann
  • Michał Zasada
  • Andreas Zingg
Original Paper


The mixture of beech (Fagus sylvatica L.) and oak (sessile oak, Quercus petraea (Matt.) Liebl., and pedunculate oak, Q. robur L.) is of considerable importance in Europe and will probably become even more important under climate change. Therefore, the performance of oak and beech in mixture was compared with the species’ growth in pure stands. Data from 37 long-term mixing experiments in Poland, Germany and Switzerland were pooled for analysis of mixing effects on stand productivity and possible interrelationships with mixing portions or site conditions. We found that on average, mixed stands of oak and beech exceeded biomass productivity in pure stands by 30 % or 1.7 t ha−1 year−1, as the growth of both species was benefitted by the mixture. However, that the interaction actually ranged from facilitation and overyielding on poor sites to underyielding on fertile sites triggered by competition. An empirically derived interaction model showed volume and dry mass growth changing in mixed stands from gains of 50 % to losses of 10 % depending on site conditions. It is concluded that the analysed mixture grows in accordance with the stress-gradient hypothesis and that our results suggest a site-specific relationship between species mixture and biomass productivity. As a consequence, an adequate species mix should result in increased productivity under steady state as well as climate change.


Facilitation Competitive reduction Competition Stress-gradient Overyielding Mixing effect Long-term mixing experiments Climate change 



Thanks to Gregor Aas, Ecological-Botanical Garden, University of Bayreuth, for his advice how to deal with the two different Quercus species in this evaluation and to Anton Fischer, Geoecology, Technische Universität München, for revision of the geoecological statements on oak and beech. We further wish to thank the German Science Foundation (Deutsche Forschungsgemeinschaft) for providing the funds for mixed stand research as part of the Collaborative Research Centre 607 (Sonderforschungsbereich SFB 607) “Growth and Parasite Defense” and the Bavarian State Ministry for Nutrition, Agriculture and Forestry for permanent support of the project W 07 “Long-term experimental plots for forest growth and yield research.” The included mixed stand trials belong to the networks of long-term experimental plots in Switzerland, Poland and Germany, and we are deeply grateful to the respective sponsoring forest administrations. Thanks are also due to Ulrich Kern for the graphical artwork.

Supplementary material

10342_2012_673_MOESM1_ESM.pdf (161 kb)
Supplementary material 1 (PDF 161 kb)


  1. Aas G (2000) Quercus petraea (Matt.) Liebl., Traubeneiche. In: Roloff A, Weisgerber H, Lang UM, Stimm B (eds) Enzyklopädie der Holzgewächse: 1–15. Wiley-VCH, WeinheimGoogle Scholar
  2. Aas G (2002) Quercus robur L., Stieleiche. In: Roloff A, Weisgerber H, Lang UM, Stimm B (eds) Enzyklopädie der Holzgewächse. Wiley-VCH, Weinheim, pp 1–15Google Scholar
  3. André F, Jonard M, Ponette Q (2008) Spatial and temporal patterns of throughfall chemistry within a temperate mixed oak-beech stand. Sci Total Environ 397:215–228PubMedCrossRefGoogle Scholar
  4. Aranda I, Gil L, Pardos J (1996) Seasonal water relations of three broadleaved species (Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Willd.) in a mixed stand in the centre of the Iberian Peninsula. For Ecol Manage 84:219–229CrossRefGoogle Scholar
  5. Assmann E (1961) Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. BLV Verlagsgesellschaft, München, Bonn, Wien, 490 pGoogle Scholar
  6. Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253CrossRefGoogle Scholar
  7. Binkley D, Stape JL, Ryan MG (2004) Thinking about efficiency of resource use in forests. For Ecol Manage 193:5–16CrossRefGoogle Scholar
  8. Bohn U, Gollup G, Hettwer C, Neuhäuslova Z, Schlüter H (2003) Map of the natural vegetation of Europe, scale 1: 2.5 million. Federal Agency for Nature Conservation, Bonn-Bad GodesbergGoogle Scholar
  9. Breda N (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417PubMedCrossRefGoogle Scholar
  10. Burschel P, Kürsten E, Larson BC (1993) Die Rolle von Wald und Forstwirtschaft im Kohlenstoffhaushalt. Forstl Forschungsber München 126, 135 pGoogle Scholar
  11. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots to plants. Oecologia 113:151–161CrossRefGoogle Scholar
  12. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–1965CrossRefGoogle Scholar
  13. Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565–574Google Scholar
  14. Ellenberg H, Leuschner Ch (2009) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Verlag Eugen Ulmer, Stuttgart 1334 pGoogle Scholar
  15. Epron D, Dreyer E (1993) Long-term effects of drought on photosynthesis of adult oak trees (Quercus petraea (Matt.) Liebl. and Quercus robur L.) in a natural stand. New Phytol 125:381–389CrossRefGoogle Scholar
  16. FAWF (2011a) Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, Depositionsmessungen im forstlichen Umweltmonitoring.
  17. FAWF (2011b) Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, Steufallmessungen im forstlichen Umweltmonitoring.
  18. Fischer A, Fischer H (2012) Restoration of temperate forests: an European approach. In: van Andel J, Aronson J (eds) Restoration ecology: the new Frontier, 2nd edn. Blackwell publishing Ltd, Oxford, pp 145–160Google Scholar
  19. Fölster H, Degenhardt M, Flor T, Lux M (1991) Untersuchungen zur Tiefendurchwurzelung und Durchwurzelungsintensität auf Braunerde-Pseudogleyen im Vorderen Hunsrück in Abhängigkeit von Baumart und Bestandesstrukturparametern. Mitteilungen aus der Forstl. Versuchsanstalt Rheinland-Pfalz 19(91):91–106Google Scholar
  20. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manage 233:211–230CrossRefGoogle Scholar
  21. Forrester DI, Bauhus J, Cowie AL, Mitchell PA, Brockwell J (2007) Productivity of three young mixed-species plantations containing N2-fixing Acacia and non-N2-fixing Eucalyptus and Pinus trees in Southeastern Australia. For Sci 53(3):426–434Google Scholar
  22. Ganghofer von A (1881) Das Forstliche Versuchswesen, Augsburg, 1881, 505 pGoogle Scholar
  23. Griess VC, Knoke Th (2011) Growth performance, windthrow, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res 41:1141–1158CrossRefGoogle Scholar
  24. Harper JL (1977) Population biology of plants. Academic Press, London, NY, p 892Google Scholar
  25. Hausrath H (1927) Versammlung des Vereins der Deutschen Forstlichen Versuchsanstalten in Rostock. Allg. Forst- u. J.-Ztg 103:73–77Google Scholar
  26. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulus PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehan EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127PubMedCrossRefGoogle Scholar
  27. Hein S, Dhôte JF (2006) Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in northern France. Ann For Sci 63:457–467CrossRefGoogle Scholar
  28. Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology 78(7):1966–1975CrossRefGoogle Scholar
  29. Huntley B (1988) European post-glacial vegetation history: a new perspective. In: Quellet H (ed) Acta XIX Congressus Internalis Ornithologici vol 1. National Museum of Natural Sciences, Ottawa, pp 1061–1077Google Scholar
  30. Jensen AM (1983) Ædelgranens (Abies alba Mill.) vækst sammenlignet med rødgranens (Picea abies (L) Karst.) i henholdsvis rene og blandede bevoksninger på sandede jorder i Midt- og Vestjylland. (Growth of Silver Fir (Abies alba Mill.) compared with the growth of Norway Spruce (Picea abies (L) Karst.) in pure and mixed stands on sandy soils in the Western parts of Denmark). Meddelelser fra Skovbrugsinstituttet, No. 14, Royal Veterinary and Agricultural University, Copenhagen, Department of Forestry, 498 pGoogle Scholar
  31. Johann K (1993) DESER-Norm 1993. Normen der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten zur Aufbereitung von waldwachstumskundlichen Dauerversuchen. Proc Dt Verb Forstl Forschungsanst, Sek Ertragskd, in Unterreichenbach-Kapfenhardt, pp 96–104Google Scholar
  32. Jonard M, André F, Ponette Q (2008) Tree species mediated effects on leaf litter dynamics in pure and mixed stands of oak and beech. Can J For Res 38:528–538CrossRefGoogle Scholar
  33. Jüttner O (1955) Eichenertragstafeln. In: Schober R (ed) (1971) Ertragstafeln der wichtigsten Baumarten. JD Sauerländer’s Verlag, Frankfurt am Main, pp 12–25, 134–138Google Scholar
  34. Kelty MJ (1992) Comparative productivity of monocultures and mixed stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic Publishers, Dordrecht, pp 125–141CrossRefGoogle Scholar
  35. Kenk G, Guehne S (2001) Management of transformation in Central Europe. For Ecol Manage 151:107–119CrossRefGoogle Scholar
  36. Kennel R (1965) Untersuchungen über die Leistung von Fichte und Buche im Rein- und Mischbestand. AFJZ 136(149–161):173–189Google Scholar
  37. Knigge W, Schulz H (1966) Grundriss der Forstbenutzung. Verlag Paul Parey, Hamburg, 584 pGoogle Scholar
  38. Kölling C, Zimmermann L (2007) Die Anfälligkeit der Wälder Deutschlands gegenüber dem Klimawandel. Gefahrstoffe-Reinhaltung der Luft 67(6):259–268Google Scholar
  39. Körner C (2002) Ökologie. In: Sitte P, Weiler EW, Kadereit JW, Bresinsky A, Körner C (eds) Strasburger Lehrbuch für Botanik, 35th edn. Spektrum Akademischer Verlag, Heidelberg, pp 886–1043Google Scholar
  40. Kremer A, Petit RJ, Ducousso A (2002) Biologie évolutive et diversité génétique des chênes cessile et pédonculé. Rev For Fr LIV 111–130Google Scholar
  41. Lang G (1994) Quartäre Vegetationsgechichte Europas. Verlag G. FischerGoogle Scholar
  42. Leibundgut H (1987) Ziele und Wege der naturnahen Waldwirtschaft Schweiz. Z. Forstwes 137:245–250Google Scholar
  43. Leuschner C (1998) Mechanismen der Konkurrenzüberlegenheit der Rotbuche. Ber Reinh Tüxen Ges 10:5–18Google Scholar
  44. Leuschner Ch, Hertel D, Coners H, Büttner V (2001) Root competition between beech and oak: a hypothesis. Oecologia 126:267–284CrossRefGoogle Scholar
  45. Levy G, Becker M, Duhamel D (1992) A comparison of the ecology of pedunculate and sessile oaks: radial growth in the centre and northwest of France. For Ecol Manage 55:51–63CrossRefGoogle Scholar
  46. Lyr H, Polster H, Fiedler HJ (1967) Gehölzphysiologie. VEB Gustav Fischer Verlag, Jena 337 pGoogle Scholar
  47. Mantel W (1961) Wald und Forst. Wechselbeziehungen zwischen Natur und Wirtschaft, Rowohlts deutsche Enzyklopädie. Rowohlt, HamburgGoogle Scholar
  48. Manthey M, Leuschner C, Härdtle W (2007) Buchenwälder und Klimawandel. Natur und Landschaft 82(9/10):441–445Google Scholar
  49. Matyssek R, Fromm J, Rennenberg H, Roloff A (2010) Biologie der Bäume. UTB Verlag Eugen Ulmer, Stuttgart, 349 pGoogle Scholar
  50. Mayer H (1984) Wälder Europas. Gustav Fischer Verlag, Stuttgart, NY, p 691Google Scholar
  51. Meinen C, Leuschner CH, Ryan NT, Hertel D (2009) No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees 23:941–950CrossRefGoogle Scholar
  52. Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between niches. Ecol Lett. doi: 10.1111/j.1461-0248.2011.01691.x,2011 PubMedGoogle Scholar
  53. Pretzsch H (1999) Waldwachstum im Wandel, Konsequenzen für Forstwissenschaft und Forstwirtschaft. Forstw Cbl 118:228–250CrossRefGoogle Scholar
  54. Pretzsch H (2003) Diversität und Produktivität von Wäldern. Allg. Forst- u. J.-Ztg. 174: 88–98Google Scholar
  55. Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169(3):637–649. doi: 10.1007/s00442-011-2240-5 PubMedCrossRefGoogle Scholar
  56. Pretzsch H, Ďurský J (2002) Growth response of Norway spruce (Picea abies (L.) Karst) upon expected climatic changes in Germany, In: Pretzsch et al. (ed) German forest sector under global change an interdisciplinary impact assessment, German. J For Sci 121(1):145–154Google Scholar
  57. Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67(7):p712. doi: 10.1051/forest/2010037 CrossRefGoogle Scholar
  58. Pretzsch H, Schütze G, Uhl E (2012) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol. doi: 10.1111/j.1438-8677.2012.00670.x PubMedGoogle Scholar
  59. Rennenberg H, Seiler W, Matyssek R, Gessler A, Kreuzwieser J (2004) Die Buche (Fagus sylvatica L.)—ein Waldbaum ohne Zukunft im südlichen Mitteleuropa?. Allg. Forst- u. J.-Ztg. 175(10/11):210–224Google Scholar
  60. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol. doi: 10.1093/treephys/tpq035 PubMedGoogle Scholar
  61. Roloff A, Bärtels A (2008) Flora der Gehölze. Ulmer, Stuttgart, p 853Google Scholar
  62. Sariyildiz T, Anderson JM (2003) Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biol Biochem 35(3):391–399CrossRefGoogle Scholar
  63. Scherer-Lorenzen M, Körner C, Schulze ED (2005) Forest diversity and function. Ecol studies 176. Springer, Heidelberg, 399 pCrossRefGoogle Scholar
  64. Schober R (1967) Buchen-Ertragstafel für mäßige und starke Durchforstung. In: Die Rotbuche 1971, J. D. Sauerländer’s Verlag, Frankfurt a. Main, 1972, Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt 43/44Google Scholar
  65. Schütz JP (1999) Close-to-nature silviculture: is this concept compatible with species diversity? Forestry 72:359–366CrossRefGoogle Scholar
  66. Spellmann H, Albert M, Schmidt M, Sutmöller J, Overbeck M (2011) Waldbauliche Anpassungsstrategien für veränderte Klimaverhältnisse. AFZ-DerWald 66(11):19–23Google Scholar
  67. Talkner U, Jansen M, Beese FO (2009) Soil phosphorus turnover in Central European beech forest ecosystems with differing tree species diversity. Eur J Soil Sci 60:338–346CrossRefGoogle Scholar
  68. Tyler G (1992) Tree species affinity of decomposer and ectomycorrhizal macrofungi in beech (Fagus silvatica L.), oak (Quercus robur, L.) and hornbeam (Carpinus betulus L.) forests. For Ecol Manage 47:269–284CrossRefGoogle Scholar
  69. Valladares F, Chico JM, Aranda I, Balaguer L, Dizengremel P, Manrique E, Dreyer E (2002) The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16:395–403Google Scholar
  70. Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, UK, 237 pCrossRefGoogle Scholar
  71. Verein Deutscher Forstlicher Versuchsanstalten (1902) Beratungen der vom Vereine Deutscher Forstlicher Versuchsanstalten eingesetzten Kommission zur Feststellung des neuen Arbeitsplanes für Durchforstungs- und Lichtungsversuche. Allg. Forst- u. J.-Ztg. 78:180–184Google Scholar
  72. Wiedemann E (1942) Der Eichenbestand mit Buchenunterwuchs. Zeitschrift für Forst- und Jagdwesen 74:305–335Google Scholar
  73. Wiedemann E (1951) Ertragskundliche und waldbauliche Grundlagen der Forstwirtschaft. JD Sauerländer‘s Verlag, Frankfurt am Main, 346 pGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hans Pretzsch
    • 1
    Email author
  • Kamil Bielak
    • 2
  • Joachim Block
    • 3
  • Arkadiusz Bruchwald
    • 7
  • Jochen Dieler
    • 1
  • Hans-Peter Ehrhart
    • 3
  • Ulrich Kohnle
    • 4
  • Jürgen Nagel
    • 5
  • Hermann Spellmann
    • 5
  • Michał Zasada
    • 2
  • Andreas Zingg
    • 6
  1. 1.Chair for Forest Growth and Yield ScienceTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.Faculty of ForestryWarsaw University of Life SciencesWarsawPoland
  3. 3.Research Institute for Forest Ecology and Forestry Rhineland-PalatinateTrippstadtGermany
  4. 4.Forest Research Institute Baden-WürttembergFreiburgGermany
  5. 5.Northwest German Forest Research StationGöttingenGermany
  6. 6.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  7. 7.Forest Research InstituteSekocin StaryPoland

Personalised recommendations