European Journal of Forest Research

, Volume 132, Issue 1, pp 71–81 | Cite as

The impact of tropospheric ozone on landscape-level merchantable biomass and ecosystem carbon in Canadian forests

  • Jean-Sébastien LandryEmail author
  • Eric T. Neilson
  • Werner A. Kurz
  • Kevin E. Percy
Original Paper


Studies have shown that tropospheric ozone (O3) impacts trees in various ways, including growth reductions. To date, the landscape-level response of Canadian forests carbon (C) to O3 exposure has not been quantified. We used a modified version of the Carbon Budget Model of the Canadian Forest Sector and data from Aspen FACE to quantify the landscape-level impacts of different O3 exposure modelling experiments. The main strengths of our approach consisted of using the most complete empirical data available to estimate the amount and location of forest C across Canada, as well as explicitly simulating the consequences of fire, insect, and harvest disturbances on forest C dynamics. These disturbances lead to younger forests and, considering trees sensitivity to O3 exposure to decrease with age, thus result in higher landscape-level modelled impacts for the same O3 levels. Despite various sources of uncertainty, our results indicate that even under a modelling experiment where O3 increases continuously over four decades, the landscape-level impacts on the merchantable biomass and ecosystem C remain limited. Our results also suggest that the current direct impacts of O3 on Canadian forests are likely below detection at the landscape level.


Tropospheric ozone Forest carbon Canada Disturbances Modelling 



We wish to thank the Air Quality Model Application Section (Meteorological Service of Canada, Environment Canada) for providing us with the 4 th highest O 3 AURAMS data. We are appreciative of the comments provided by Dr. Andrzej Bytnerowicz, Pr. Sagar Krupa, and Dr. Allan Legge on the development of the ERF and their implementation into CBM-CFS3. The Regulatory Analysis and Valuation Division (Economic Analysis Directorate, Environment Canada) provided funds that enabled this study. The Canadian Forest Service of Natural Resources Canada provided support for model development and analyses. We also thank two anonymous reviewers for suggestions that have improved the manuscript, as well as G. Grill and B. Mehdi for helpful comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10342_2012_656_MOESM1_ESM.pdf (129 kb)
Supplementary material 1 (PDF 130 kb)


  1. Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228CrossRefGoogle Scholar
  2. Andersen CP, Wilson R, Plocher M, Hogsett WE (1997) Carry-over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings. Tree Physiol 17:805–811PubMedCrossRefGoogle Scholar
  3. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Chang Biol 12:862–882CrossRefGoogle Scholar
  4. Bytnerowicz A, Omasa K, Paoletti E (2007) Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environ Pollut 147:438–445PubMedCrossRefGoogle Scholar
  5. Collins WJ, Sitch S, Boucher O (2010) How vegetation impacts affect climate metrics for ozone precursors. J Geophys Res 115:D23308CrossRefGoogle Scholar
  6. Cooper OR, Parrish DD, Stohl A, Trainer M, Nédélec P, Thouret V, Cammas JP, Oltmans SJ, Johnson BJ, Tarasick D, Leblanc T, McDermid IS, Jaffe D, Gao R, Stith J, Ryerson T, Aikin K, Campos T, Weinheimer A, Avery MA (2010) Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463:344–348PubMedCrossRefGoogle Scholar
  7. Coulston JW, Smith GC, Smith WD (2003) Regional assessment of ozone sensitive tree species using bioindicator plants. Environ Monit Assess 83:113–127PubMedCrossRefGoogle Scholar
  8. Environmental Protection Agency (2009) Making progress on ground-level ozone. Internet version accessed on 28 Nov 2011. Available at:
  9. Felzer B, Kicklighter D, Melillo J, Wang C, Zhuang Q, Prinn R (2004) Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus 56B:230–248Google Scholar
  10. Felzer B, Reilly J, Melillo J, Kicklighter D, Sarofim M, Wang C, Prinn R, Zhuang Q (2005) Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Clim Chang 73:345–373CrossRefGoogle Scholar
  11. Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32CrossRefGoogle Scholar
  12. Gong W, Dastoor AP, Bouchet VS, Gong S, Makar PA, Moran MD, Pabla B, Ménard S, Crevier L-P, Cousineau S, Venkatesh S (2006) Cloud processing of gases and aerosols in a regional air quality model (AURAMS). Atmos Res 82:248–275CrossRefGoogle Scholar
  13. Karlsson PE, Pleijel H, Belhaj M, Danielsson H, Dahlin B, Andersson M, Hansson M, Munthe J, Grennfelt P (2005) Economic assessment of the negative impacts of ozone on crop yields and forest production. A case study of the Estate Östads Säteri in southwestern Sweden. Ambio 34:32–40PubMedGoogle Scholar
  14. Karlsson PE, Pleijel H, Simpson D (2009) Ozone exposure and impacts on vegetation in the Nordic and Baltic countries. Ambio 38:402–405PubMedCrossRefGoogle Scholar
  15. Karnosky DF, Skelly JM, Percy KE, Chappelka AH (2007a) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ Pollut 147:489–506PubMedCrossRefGoogle Scholar
  16. Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007b) Free-air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190PubMedCrossRefGoogle Scholar
  17. Kull SJ, Kurz WA, Rampley GJ, Banfield GE, Schivatcheva RK, Apps MJ (2007) Operational-Scale Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) Version 1.0: User’s Guide. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, CanadaGoogle Scholar
  18. Kurz WA, Apps MJ (1999) A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–547CrossRefGoogle Scholar
  19. Kurz WA, Apps MJ, Webb TM, McNamee PJ (1992) The carbon budget of the Canadian forest sector: phase I. Information Report NOR-X-326, Forestry Canada, Northern Forestry Centre, Edmonton, CanadaGoogle Scholar
  20. Kurz WA, Stinson G, Rampley G (2008a) Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philos Trans R Soc B 363:2261–2269CrossRefGoogle Scholar
  21. Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET (2008b) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci 105:1551–1555PubMedCrossRefGoogle Scholar
  22. Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ (2009) CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220:480–504CrossRefGoogle Scholar
  23. Laurence JA, Andersen CP (2003) Ozone and natural systems: understanding exposure, response, and risk. Environ Intern 29:155–160CrossRefGoogle Scholar
  24. Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582PubMedCrossRefGoogle Scholar
  25. Matyssek R, Karnosky DF, Wieser G, Percy K, Oksanen E, Grams TEE, Kubiske M, Hanke D, Pretzsch H (2010a) Advances in understanding ozone impact on forest trees: messages from novel phytotron and free-air fumigation studies. Environ Pollut 158:1990–2006PubMedCrossRefGoogle Scholar
  26. Matyssek R, Schaub M, Wieser G (2010b) Air pollution and climate change effects on forests ecosystems: new evidence. Eur J Forest Res 129:417–419CrossRefGoogle Scholar
  27. Musselman RC, Lefohn AS, Massman WJ, Heath RL (2006) A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos Environ 40:1869–1888CrossRefGoogle Scholar
  28. Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Häberle K-H (2010) Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Environ Pollut 158:1071–1078PubMedCrossRefGoogle Scholar
  29. Ollinger SV, Aber JD, Reich PB (1997) Simulating ozone effects on forest productivity: interactions among leaf-, canopy- and stand-level processes. Ecol Appl 7:1237–1251CrossRefGoogle Scholar
  30. Ollinger SV, Aber JD, Reich PB, Freuder RJ (2002) Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Glob Chang Biol 8:545–562CrossRefGoogle Scholar
  31. Oltmans SJ, Lefohn AS, Harris JM, Galbally I, Scheel HE, Bodeker G, Brunke E, Claude H, Tarasick D, Johnson BJ, Simmonds P, Shadwick D, Anlauf K, Hayden K, Schmidlin F, Fujimoto T, Akagi K, Meyer C, Nichol S, Davies J, Redondas A, Cuevas E (2006) Long-term changes in tropospheric ozone. Atmos Environ 40:3156–3173CrossRefGoogle Scholar
  32. Paoletti E, Schaub M, Matyssek R, Wieser G, Augustaitis A, Bastrup-Birk AM, Bytnerowicz A, Günthardt-Goerg MS, Müller-Starck G, Serengil Y (2010) Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environ Pollut 158:1986–1989PubMedCrossRefGoogle Scholar
  33. Percy KE, Karnosky DF (2007) Air quality in natural areas: interface between the public, science and regulation. Environ Pollut 149:256–267PubMedCrossRefGoogle Scholar
  34. Percy KE, Nosal M, Heilman W, Dann T, Sober J, Legge AH, Karnosky DF (2007) New exposure-based metric approach for evaluating O3 risk to North American aspen forests. Environ Pollut 147:554–566PubMedCrossRefGoogle Scholar
  35. Percy KE, Nosal M, Heilman W, Dann T, Sober J, Karnosky DF (2009) Ozone exposure-based growth response models for trembling aspen and white birch. In AH Legge (ed) Air quality and ecological impacts: relating sources to effects, developments in environmental science, vol 9. Oxford, United Kingdom, pp 269–293Google Scholar
  36. Percy KE, Matyssek R, King JS (2010) Facing the future: evidence from joint Aspen FACE, SoyFACE and SFB 607 meeting. Environ Pollut 158:955–958PubMedCrossRefGoogle Scholar
  37. Power K, Gillis M (2006) Canada’s Forest Inventory 2001. Information Report BC-X-408, Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, CanadaGoogle Scholar
  38. Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070PubMedCrossRefGoogle Scholar
  39. Ren W, Tian H, Tao B, Chappelka A, Sun G, Lu C, Liu M, Chen G, Xu X (2011) Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems. Glob Ecol Biogeogr 20:391–406CrossRefGoogle Scholar
  40. Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794PubMedCrossRefGoogle Scholar
  41. Smyth SC, Jiang W, Roth H, Moran MD, Makar PA, Yang F, Bouchet VS, Landry H (2009) A comparative performance evaluation of the AURAMS and CMAQ air-quality modelling systems. Atmos Environ 43:1059–1070CrossRefGoogle Scholar
  42. Stinson G, Kurz WA, Smyth CE, Neilson ET, Dymond CC, Metsaranta JM, Boisvenue C, Rampley GJ, Li Q, White TM, Blain D (2011) An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob Chang Biol 17:2227–2244CrossRefGoogle Scholar
  43. Talhelm AF, Pregitzer KS, Zak DR (2009) Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon. Ecol Lett 12:1219–1228PubMedCrossRefGoogle Scholar
  44. Vingarzan R (2004) A review of surface ozone background levels and trends. Atmosph Environ 38:3431–3442CrossRefGoogle Scholar
  45. Vitousek PM (1994) Beyond global warming: ecology and global change. Ecol 75:1861–1876CrossRefGoogle Scholar
  46. Watanabe M, Matsuo N, Yamaguchi M, Matsumura H, Kohno Y, Izuta T (2010) Risk assessment of ozone impact on the carbon absorption of Japanese representative conifers. Eur J For Res 129:421–430CrossRefGoogle Scholar
  47. Watanabe M, Yamaguchi M, Matsumura H, Kohno Y, Izuta T (2012) Risk assessment of ozone impact on Fagus crenata in Japan: consideration of atmospheric nitrogen deposition. Eur J For Res 131:475–484Google Scholar
  48. Zak DR, Pregitzer KS, Kubiske ME, Burton AJ (2011) Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecol Lett 14:1220–1226PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jean-Sébastien Landry
    • 1
    • 4
    Email author
  • Eric T. Neilson
    • 2
  • Werner A. Kurz
    • 2
  • Kevin E. Percy
    • 3
    • 5
  1. 1.Regulatory Analysis and Valuation DivisionEnvironment CanadaGatineauCanada
  2. 2.Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
  3. 3.Canadian Forest ServiceNatural Resources CanadaFrederictonCanada
  4. 4.Department of GeographyMcGill UniversityMontréalCanada
  5. 5.K. E. Percy Air Quality Effects Consulting Ltd.Fort McMurrayCanada

Personalised recommendations