Advertisement

European Journal of Forest Research

, Volume 131, Issue 6, pp 1957–1965 | Cite as

Spring tree phenology in the Alps: effects of air temperature, altitude and local topography

  • Maryline Pellerin
  • Anne Delestrade
  • Gwladys Mathieu
  • Olivier Rigault
  • Nigel G. Yoccoz
Original Paper

Abstract

A participatory network was set up to study tree phenology in the Western Alps. We used data collected in 2006 and 2007 on birch, ash, hazel, spruce and larch to assess how local air temperature, altitude and other topographic variables influenced dates of budburst and leaf unfolding. Altitude was, as expected, a main predictor variable of budburst and leafing dates with delays ranging from 2.4 to 3.4 days per 100 m. Ash was the only species with strong evidence of a year difference in the altitudinal gradient with the warm year (2007) characterized by a weaker altitudinal gradient. We found a latitudinal gradient in the appearance of budburst for one coniferous species (larch) and curvature affected leafing in ash. Thermal sum (sum of Degree-Days above 0 °C) was increasing with altitude for budburst (birch, ash and larch) and leafing (birch and ash). Understanding of altitude and topography effects in addition to temperature in phenological models should improve projections of future changes in mountain regions.

Keywords

Budburst Leaf unfolding Participatory network Thermal sum Snow 

Notes

Acknowledgments

We thank Anne Loison for useful comments on the analyses and Jennifer Stien for reading the last draft. We are grateful to all the volunteers for help to collecting data on the study sites. This work is part of the project “Phénoclim” supported by the Rhône-Alpes and PACA Regions, the Europe (FEDER), the Foundations “Nicolas Hulot pour la Nature et l’Homme”, “Somfy”, “Véolia Environment”, “Petzl” and “Nature et Découvertes”, the EOG Association for Conservation, the Forsitec company, the British Ecological Society, the Patagonia company, and the “Crédit Agricole des Savoies” bank. We also thank the CNRS research group 2968 “Système d’Information Phénologique pour la Gestion et l’Etude des Changements Climatiques”, the National Parks of “Les Ecrins” and “Vanoise”, the Regional Natural Parks of “Les Bauges”, “Queyras” and “Vercors”, the Natural Reserves of “Hauts-Plateaux du Vercors” and “Marais de Lavours”, and the Alpine Botanic Gardens of “Lautaret” and “Champex”, for their support.

References

  1. ArcGIS (2004) ESRI GIS and mapping software. Version 8.3.0Google Scholar
  2. Beniston M (2006) Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia 562:3–16CrossRefGoogle Scholar
  3. Bliss LC (1971) Arctic and alpine plant life cycles. Ann Rev Ecol Syst 2:405–438CrossRefGoogle Scholar
  4. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  5. Campanella MV, Bertiller MB (2008) Plant phenology, leaf traits and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina. J Veg Sci 19:75–85CrossRefGoogle Scholar
  6. Cannel MGR, Smith RI (1986) Climatic warming, spring budburst and frost damage on trees. J Appl Ecol 23:177–191CrossRefGoogle Scholar
  7. Castro-Diez P, Montserrat-Marti G, Cornelissen JHC (2003) Trade-offs between phenology, relative growth rate, life form and seed mass among 22 Mediterranean woody species. Plant Ecol 166:117–129CrossRefGoogle Scholar
  8. Chen X, Hu B, Yu R (2005) Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Glob Change Biol 11:1–13CrossRefGoogle Scholar
  9. Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112CrossRefGoogle Scholar
  10. Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim Res 19:257–264CrossRefGoogle Scholar
  11. Chmielewski FM, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121:69–78CrossRefGoogle Scholar
  12. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365PubMedCrossRefGoogle Scholar
  13. Defila C (1991) Pflanzenphänologie der Schweiz. Dissertation, University of Zürich. Veröff Schweiz Meteorol Anst 50: 1–235Google Scholar
  14. Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207PubMedCrossRefGoogle Scholar
  15. Defila C, Clot B (2005) Phytophenological trends in the Swiss Alps, 1951–2002. Meteorol Z 14:191–196CrossRefGoogle Scholar
  16. Diekmann M, Eilertsen O, Fremstad E, Lawesson JE, Aude E (1999) Beech forest communities in the Nordic countries—a multivariate analysis. Plant Ecol 140:203–220CrossRefGoogle Scholar
  17. Dittmar C, Elling W (1999) Jahrringbreite von Fichte und Buche in Abhängigkeit von Witterung und Höhenlage. Forstwiss Centralbl 118:251–270CrossRefGoogle Scholar
  18. Dittmar C, Elling W (2006) Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. Eur J For Res 125:181–188CrossRefGoogle Scholar
  19. Fitter AH, Fitter RSR, Harris ITB, Williamson MH (1995) Relationships between first flowering date and temperature in the flora of a locality in central England. Funct Ecol 9:55–60CrossRefGoogle Scholar
  20. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  21. Gibon A, Sheeren D, Monteil C, Ladet S, Balent G (2010) Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework. Landsc Ecol 25:267–285CrossRefGoogle Scholar
  22. Gormsen AK, Hense A, Toldam-Andersen TB, Braun P (2005) Large-scale climate variability and its effects on mean temperature and flowering time of Prunus and Betula in Denmark. Theor Appl Climatol 82:41–50CrossRefGoogle Scholar
  23. Hannerz M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Can J For Res 29:1–11Google Scholar
  24. Huelber K, Gottfried M, Pauli H, Reiter K, Winkler M, Grabherr G (2006) Phenological responses of snowbed Species to snow removal dates in the Central Alps: implications for climate warming. Arctic Antarct Alp Res 38:99–103CrossRefGoogle Scholar
  25. Hülber K, Winkler M, Grabherr G (2010) Intraseasonal climate and habitat-specific variability controls the flowering phenology of high alpine plant species. Funct Ecol 24:245–252CrossRefGoogle Scholar
  26. Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol 29:597–604CrossRefGoogle Scholar
  27. Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362PubMedCrossRefGoogle Scholar
  28. Inouye DW, Saavedra F, Lee-Yang W (2003) Environmental influences on the phenology and abundance of flowering by Androsace septentrionalis (Primulaceae). Am J Bot 90:905–910PubMedCrossRefGoogle Scholar
  29. Jackson MT (1966) Effects of microclimate on spring flowering phenology. Ecology 47:407–415CrossRefGoogle Scholar
  30. Keller F, Goyette S, Beniston M (2005) Sensitivity analysis of snowcover to climate change scenarios and their impact on plant habitats in alpine terrain. Clim Change 72:299–319CrossRefGoogle Scholar
  31. Körner C (1999) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, BerlinGoogle Scholar
  32. Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462PubMedCrossRefGoogle Scholar
  33. Kramer K (1995) Phenotypic plasticity of the phenology of seven European tree species in relation to climate warming. Plant Cell Environ 18:93–104CrossRefGoogle Scholar
  34. Menzel A (1997) Phänologie von Waldbäumen unter sich ändernden Klimabedingungen. Forstl. Forschungsberic (München) 164Google Scholar
  35. Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim Change 57:243–263CrossRefGoogle Scholar
  36. Menzel A, Jakobi G, Ahas R, Scheifinger H, Estrella N (2003) Variations of the climatological growing season (1951–2000) in Germany compared with other countries. Int J Climatol 23:793–812CrossRefGoogle Scholar
  37. Menzel A, Sparks TH, Estrella N, Eckhardt S (2005) ‘SSW to NNE’—North Atlantic oscillation affects the progress of seasons across Europe. Glob Change Biol 11:909–918CrossRefGoogle Scholar
  38. Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976CrossRefGoogle Scholar
  39. Menzel A, Estrella N, Schleip C (2008) Impacts of climate variability, trends and NAO on 20th century European plant phenology. In: Brönnimann S, Luterbacher J, Ewen T, Diaz HF, Stolarski R, Neu U (eds) Climate variability and extremes during the past 100 years, vol advances in global change research, vol 33. Springer, Berlin, pp 221–233CrossRefGoogle Scholar
  40. Migliavacca M, Cremonese E, Colombo R et al (2008) European larch phenology in the Alps: can we grasp the role of ecological factors by combining field observations and inverse modelling? Int J Biometeorol 52:587–605PubMedCrossRefGoogle Scholar
  41. Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s concord: a community perspective. Ecology 89:332–341PubMedCrossRefGoogle Scholar
  42. Moser L, Fonti P, Büntgen U et al (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233PubMedCrossRefGoogle Scholar
  43. Myking T (1997) Effects of constant and fluctuating temperature on time to budburst in Betula pubescens and its relation to bud respiration. Trees 12:107–112Google Scholar
  44. Nordli O, Wielgolaski FE, Bakken AK et al (2008) Regional trends for bud burst and flowering of woody plants in Norway as related to climate change. Int J Biometeorol 52:625–639PubMedCrossRefGoogle Scholar
  45. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–669CrossRefGoogle Scholar
  46. Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Change Biol 12:1174–1188CrossRefGoogle Scholar
  47. Rötzer T, Grote R, Pretzsch H (2004) The timing of bud burst and its effect on tree growth. Int J Biometeorol 48:109–118PubMedCrossRefGoogle Scholar
  48. Scheifinger H, Menzel A, Koch E, Peter C, Ahas R (2002) Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in Central Europe. Int J Climatol 22:1739–1755CrossRefGoogle Scholar
  49. Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87PubMedCrossRefGoogle Scholar
  50. Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in alpine spring phenology: a multivariate analysis approach. Clim Change 73:395–414CrossRefGoogle Scholar
  51. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL http://www.R-project.org
  52. Theurillat JP, Schlüssel A (2000) Phenology and distribution strategy of key plant species within the subalpine-alpine ecocline in the Valaisan Alps (Switzerland). Phytocoenologia 30:439–456Google Scholar
  53. Totland Ø, Alatalo JM (2002) Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia 133:168–175CrossRefGoogle Scholar
  54. Vitasse Y, Delzona S, Dufrêne E et al (2009a) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744CrossRefGoogle Scholar
  55. Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009b) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198PubMedCrossRefGoogle Scholar
  56. Wielgolaski FE (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 42:158–168CrossRefGoogle Scholar
  57. Wipf S (2010) Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecol 207:53–66CrossRefGoogle Scholar
  58. Wood SN (2006) Generalized additive models: an introduction with R. Taylor & Francis, CRC Press, LondonGoogle Scholar
  59. Ziello C, Estrella N, Kostova M, Koch E, Menzel A (2009) Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Clim Res 39:227–234CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Maryline Pellerin
    • 1
  • Anne Delestrade
    • 1
    • 2
  • Gwladys Mathieu
    • 1
  • Olivier Rigault
    • 1
  • Nigel G. Yoccoz
    • 1
    • 3
  1. 1.Centre de Recherches sur les Ecosystèmes d’Altitude (CREA)ChamonixFrance
  2. 2.Laboratoire d’Ecologie AlpineUniversité de SavoieLe Bourget du LacFrance
  3. 3.Department of Arctic and Marine BiologyUniversity of TromsøTromsöNorway

Personalised recommendations