European Journal of Forest Research

, Volume 131, Issue 6, pp 1917–1931

Estimation of stem attributes using a combination of terrestrial and airborne laser scanning

  • Eva Lindberg
  • Johan Holmgren
  • Kenneth Olofsson
  • Håkan Olsson
Original Paper

Abstract

Properties of individual trees can be estimated from airborne laser scanning (ALS) data provided that the scanning is dense enough and the positions of field-measured trees are available as training data. However, such detailed manual field measurements are laborious. This paper presents new methods to use terrestrial laser scanning (TLS) for automatic measurements of tree stems and to further link these ground measurements to ALS data analyzed at the single tree level. The methods have been validated in six 80 × 80 m field plots in spruce-dominated forest (lat. 58°N, long. 13°E). In a first step, individual tree stems were automatically detected from TLS data. The root mean square error (RMSE) for DBH was 38.0 mm (13.1 %), and the bias was 1.6 mm (0.5 %). In a second step, trees detected from the TLS data were automatically co-registered and linked with the corresponding trees detected from the ALS data. In a third step, tree level regression models were created for stem attributes derived from the TLS data using independent variables derived from trees detected from the ALS data. Leave-one-out cross-validation for one field plot at a time provided an RMSE for tree level ALS estimates trained with TLS data of 46.0 mm (15.4 %) for DBH, 9.4 dm (3.7 %) for tree height, and 197.4 dm3 (34.0 %) for stem volume, which was nearly as accurate as when data from manual field inventory were used for training.

Keywords

Airborne laser scanning Terrestrial laser scanning Forest inventory Single tree detection 

References

  1. Aschoff T, Thies M, Spiecker H (2004) Describing forest stands using terrestrial laser-scanning. In: International archives of photogrammetry, remote sensing and spatial information sciences, Istanbul, Turkey, 12–23 July 2004. XXth ISPRS Congress: proceedings of commission V. Citeseer, XXXV (Part B5), pp 237–241Google Scholar
  2. Axelsson PE (1999) Processing of laser scanner data—algorithms and applications. ISPRS J Photogram Remote Sens 54(2–3):138–147CrossRefGoogle Scholar
  3. Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens 33(Part B4/1):111–118Google Scholar
  4. Bienert A, Scheller S, Keane E, Mohan F, Nugent C (2007) Tree detection and diameter estimations by analysis of forest terrestrial laserscanner point clouds. In: ISPRS workshop on laser scanning 2007 and SilviLaser 2007 Espoo, Espoo, Finland, 12–14 September, 2007. pp 50–55Google Scholar
  5. Bland JM, Altman DG (1986) Statistical-methods for assessing agreement between 2 methods of clinical measurement. Lancet 1(8476):307–310PubMedCrossRefGoogle Scholar
  6. Brandel G (1990) Volymfunktioner för enskilda träd: tall, gran och björk [Volume functions for individual trees : Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula pendula and Betula pubescens)]. 26. Swedish University of Agricultural Sciences, Institutionen för skogsproduktion (Department of Forest Yield Research), Garpenberg, SwedenGoogle Scholar
  7. Falkowski MJ, Smith AMS, Hudak AT, Gessler PE, Vierling LA, Crookston NL (2006) Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data. Can J Remote Sens 32(2):153–161CrossRefGoogle Scholar
  8. Fritz A, Weinacker H, Koch B (2011) A method for linking TLS- and ALS-derived trees. In: SilviLaser 2011, University of Tasmania, in Hobart, Australia, 16–20 October, 2011Google Scholar
  9. Gonzalez R, Wintz P (1987) Digital image processing, 2nd edn. Addison-Wesley, Reading, MAGoogle Scholar
  10. Gorte BGH, Pfeifer N (2004) Structuring laser-scanned trees using 3D mathematical morphology. In: International archives of photogrammetry, remote sensing and spatial information sciences, Istanbul, Turkey, 12–23 July 2004. XXth ISPRS congress: proceedings of commission V. Citeseer, XXXV (Part B5), pp 929–933Google Scholar
  11. Gupta S, Weinacker H, Koch B (2010) Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne fullwave lidar data. Remote Sens 2(4):968–989CrossRefGoogle Scholar
  12. Henning JG, Radtke PJ (2006) Detailed stem measurements of standing trees from ground-based scanning lidar. Forensic Sci 52(1):67–80Google Scholar
  13. Hilker T, van Leeuwen M, Coops NC, Wulder MA, Newnham GJ, Jupp DLB, Culvenor DS (2010) Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand. Trees Struct Funct 24(5):819–832. doi:10.1007/s00468-010-0452-7 CrossRefGoogle Scholar
  14. Hirschmugl M (2008) Derivation of forest parameters from UltracamD data. Dissertation, Graz University of Technology, Graz, AustriaGoogle Scholar
  15. Holm S (1977) Transformationer av en eller flera beroende variabler i regressionsanalys (in Swedish). HUGIN, vol 7. Stockholm, SwedenGoogle Scholar
  16. Holmgren J, Barth A, Larsson H, Olsson H (2010) Prediction of stem attributes by combining airborne laser scanning and measurements from harvesting machinery. In: Silvilaser 2010, the 10th international conference on LiDAR applications for assessing forest ecosystems, Freiburg, Germany, 14–17 September, 2010Google Scholar
  17. Hopkinson C, Chasmer L, Young-Pow C, Treitz P (2004) Assessing forest metrics with a ground-based scanning lidar. Can J For Res Revue Can De Recherche Forestiere 34(3):573–583. doi:10.1139/x03-225 CrossRefGoogle Scholar
  18. Hyyppä J, Kelle O, Lehikoinen M, Inkinen M (2001) A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans Geosci Remote Sens 39(5):969–975CrossRefGoogle Scholar
  19. InnovMetric SI (2010) PolyWorks: 3d scanner software. http://www.innovmetric.com/polyworks/3D-scanners/home.aspx?lang=en. Accessed 2010-12-30 2010
  20. Jensen J (1906) Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30(1):175–193CrossRefGoogle Scholar
  21. Király G, Brolly G (2007) Tree height estimation methods for terrestrial laser scanning in a forest reserve. In: Rönnholm P, Hyyppä H, Hyyppä J (eds) International archives of photogrammetry, remote sensing and spatial information sciences, Espoo, Finland, September 12–14, 2007. Proceedings of the ISPRS Workshop ‘Laser Scanning 2007 and SilviLaser 2007’. XXXVI-3/W52, pp 211–215Google Scholar
  22. Lindberg E, Holmgren J, Olofsson K, Olsson H (2010) Estimation of stem attributes using a combination of terrestrial and airborne laser scanning. In: Silvilaser 2010, the 10th international conference on LiDAR applications for assessing forest ecosystems, Freiburg, Germany, 14–17 September, 2010Google Scholar
  23. Lovell JL, Jupp DLB, Culvenor DS, Coops NC (2003) Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can J Remote Sens 29(5):607–622CrossRefGoogle Scholar
  24. Maas HG, Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter determination from terrestrial laser scanner data. Int J Remote Sens 29(5):1579–1593. doi:10.1080/01431160701736406 CrossRefGoogle Scholar
  25. Olofsson K, Lindberg E, Holmgren J (2008) A method for linking field-surveyed and aerial-detected single trees using cross correlation of position images and the optimization of weighted tree list graphs. In: Hill RA, Rosette J, Suárez J (eds) Proceedings of SilviLaser 2008, 8th international conference on LiDAR applications in forest assessment and inventory, Heriot-Watt University, Edinburgh, UK, 17–19 September, 2008, Heriot-Watt University, Edinburgh, UK, 17–19 September 2008. SilviLaser 2008 Organizing Committee, Edinburgh: Forest Research, Bournemouth UK, pp 95–104Google Scholar
  26. Persson Å, Holmgren J, Söderman U (2002) Detecting and measuring individual trees using an airborne laser scanner. Photogramm Eng Remote Sens 68(9):925–932Google Scholar
  27. Pfeifer N, Winterhalder D (2004) Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Freiburg, Germany, 3–6 October 2004. ISPRS working group VIII/2. Citeseer, XXXVI-8/W2, pp 76–81Google Scholar
  28. Pfeifer N, Gorte BGH, Winterhalder D (2004) Automatic reconstruction of single trees from terrestrial laser scanner data. In: International archives of photogrammetry, remote sensing and spatial information sciences, Istanbul, Turkey, 12–23 July 2004. XXth ISPRS congress: proceedings of commission V. Citeseer, XXXV (Part B5), pp. 114–119Google Scholar
  29. Pollock RJ (1996) The automatic recognition of individual trees in aerial images of forests based on a synthetic tree crown image model. Dissertation, University of British Columbia, Vancouver, CanadaGoogle Scholar
  30. Reitberger J, Schnorr C, Krzystek P, Stilla U (2009) 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J Photogram Rem Sens 64(6):561–574. doi:10.1016/j.isprsjprs.2009.04.002 CrossRefGoogle Scholar
  31. Soininen A (2004) Terra Scan for MicroStation, user’s guide. Terrasolid Ltd, Jyvaskyla, Finland 132Google Scholar
  32. Solberg S, Næsset E, Bollandsås OM (2006) Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogramm Eng Remote Sens 72(12):1369–1378Google Scholar
  33. Thies M, Spiecker H (2004) Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. In: International archives of photogrammetry, remote sensing and spatial information sciences, Freiburg, Germany, 3–6 October 2004. ISPRS working group VIII/2. Citeseer, XXXVI-8/W2, pp 192–197Google Scholar
  34. Thies M, Pfeifer N, Winterhalder D, Gorte BGH (2004) Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scand J For Res 19(6):571–581. doi:10.1080/02827580410019562 CrossRefGoogle Scholar
  35. Van Leeuwen M, Coops NC, Wulder MA (2010) Canopy surface reconstruction from a LiDAR point cloud using Hough transform. Remote Sens Lett 1(3):125–132. doi:10.1080/01431161003649339 CrossRefGoogle Scholar
  36. Vauhkonen J, Tokola T, Maltamo M, Packalén P (2008) Effects of pulse density on predicting characteristics of individual trees of Scandinavian commercial species using alpha shape metrics based on airborne laser scanning data. Can J Remote Sens 34:441–459CrossRefGoogle Scholar
  37. Vauhkonen J, Korpela I, Maltamo M, Tokola T (2010) Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sens Environ 114:1263–1276CrossRefGoogle Scholar
  38. Watt PJ, Donoghue DNM (2005) Measuring forest structure with terrestrial laser scanning. Int J Remote Sens 26(7):1437–1446. doi:10.1080/01431160512331337961 CrossRefGoogle Scholar
  39. Wezyk P, Koziol K, Glista M, Pierzchalski M (2007) Terrestrial laser scanning versus traditional forest inventory First results from the polish forests. In: ISPRS workshop on laser scanning 2007 and SilviLaser 2007 Espoo, Espoo, Finland, 12–14 September, 2007, pp 424–429Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Eva Lindberg
    • 1
  • Johan Holmgren
    • 1
  • Kenneth Olofsson
    • 1
  • Håkan Olsson
    • 1
  1. 1.Department of Forest Resource ManagementSwedish University of Agricultural SciencesUmeåSweden

Personalised recommendations