European Journal of Forest Research

, Volume 131, Issue 6, pp 1869–1887 | Cite as

Predicting depth translocation of base cations after forest liming: results from long-term experiments

  • Anja Guckland
  • Bernd Ahrends
  • Uwe Paar
  • Inge Dammann
  • Jan Evers
  • Karl Josef Meiwes
  • Egbert Schönfelder
  • Thomas Ullrich
  • Michael Mindrup
  • Nils König
  • Johannes Eichhorn
Original Paper


Forest liming is a common measure to counteract soil acidification. In forest practice, lime is applied to the forest floor where it changes the chemical properties. However, little is known about the depth impact of liming and the depth translocation of lime components. To investigate the long-term impact of forest liming, several study plots have been established in the 1980s in Germany in stands with different site conditions. We analysed soil chemical data obtained during the last 28 years from 45 of the study plots. We examined the depth impact of liming and predicted the main factors responsible for the increase in Calcium (Ca) and Magnesium (Mg) stocks after liming in the mineral soil using multiple linear regression analyses (MLR). Stocks of Ca and Mg as well as base saturation (BS) showed a strong depth gradient with significant differences between limed and control plots down to 40 cm of the mineral soil. About 65–70 % of applied Ca and Mg were recovered in the forest floor and the upper 40 cm of the mineral soil. BS in 0–40 cm increased by a mean of 11 %. MLR models could explain 48–74 % of the variation in mean changes of Ca and Mg in 0–10, 10–20 and 20–40 cm soil depth when soil and climate variables, amount of applied lime and years after liming are included in the model. After testing the model robustness with a cross-validating procedure, we concluded that these models might be applied to many regions in Central Europe with comparable soil and climate conditions and thus, have widespread application.


Soil chemistry Calcium Magnesium Base saturation Subsoil Liming Multiple linear regressions 


  1. Aldinger E (1983) Gesundheitszustand von nadelholzbeständen auf gedüngten und ungedüngten Standorten im Buntsandstein-Schwarzwald. AFZ 38:794–796Google Scholar
  2. Aldinger E (1987) Elementgehalte im Boden und in Nadeln verschieden stark geschädigter Fichten-Tannen-Bestände auf Praxiskalkungsflächen im Buntsandstein-Schwarzwald, Freiburger Bodenkundliche Abhandlungen, issue 19. Freiburg im Breisgau, 266 pGoogle Scholar
  3. Andersson S, Nilsson I, Valeur I (1999) Influence of dolomitic lime on DOC and DON leaching in a forest soil. Biogeochemistry 47:297–317CrossRefGoogle Scholar
  4. Asche N, Halverscheid U (1998) Langfristige Wirkung einer Kalkung auf Bodenvegetation, Humusform und pH-Wert. Allg Forstz 6:288–289Google Scholar
  5. Augustin S, Mindrup M, Meiwes KJ (1997) Soil chemistry. In: Hüttl RF, Schaaf W (eds) Magnesium deficiency in forest ecosystems. Kluwer, Dordrecht, pp 255–273CrossRefGoogle Scholar
  6. Bakker MR, Nys C, Picard J-F (1999) The effects of liming and gypsum applications on a sessile oak (Quercus petraea (M.) Liebl.) stand at La Croix-Scaille (French Ardennes) I. Site characteristics, soil chemistry and aerial biomass. Plant Soil 206:99–108CrossRefGoogle Scholar
  7. Boden AG (2005) Bodenkundliche Kartieranleitung. Schweizerbart, HannoverGoogle Scholar
  8. Booltink HWG, Bouma J (1993) Sensitivity analysis on processes affecting bypass flow. Hydrol Proc 7:33–43CrossRefGoogle Scholar
  9. Borken W, Matzner E (2004) Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany. J Plant Nutr Soil Sci 167:277–283CrossRefGoogle Scholar
  10. Bredemeier M (1989) Nature and potential of ecosystem-internal acidification processes in relation to acid deposition, in: acid deposition. British Library Technical Communications, London, pp 197–212Google Scholar
  11. Bruelheide H, Udelhoven P (2005) Correspondence of the fine-scale spatial variation in soil chemistry and the herb layer vegetation in beech forests. For Ecol Manag 210:205–223CrossRefGoogle Scholar
  12. Chadwick OA, Gavenda RT, Kelly EF, Ziegler K, Olson CG, Elliott WC, Hendricks DM (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chem Geol 202:195–223CrossRefGoogle Scholar
  13. Choi DS, Jin HO, Lee CH, Kim YC, Kayama M (2005) Effect of soil acidification on the growth of Korean pine (Pinus karaiensis) seedlings in a granite-derived forest soil. Environ Sci 12:33–47PubMedGoogle Scholar
  14. de Martonne E (1926) Une Nouvelle fonction climatologique. L’Indice d’aridité. La Météorologie 2:449–458Google Scholar
  15. Derksen S, Keselman HJ (1992) Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. Br J Math Stat Psych 45:265–282CrossRefGoogle Scholar
  16. Dhamala B, Mitchell M, Stam A (1990) Sulfur dynamics in mineral horizons of two northern hardwood soils. A column study with 35S. Biogeochemistry 10:143–160CrossRefGoogle Scholar
  17. FAO (2006) Guidelines for soil description, 4th edn. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  18. Grigal DF, McRoberts RE, Ohmann LF (1991) Spatial variation in chemical properties of forest floor and surface mineral soil in the north central United States. Soil Sci 151:282–290CrossRefGoogle Scholar
  19. Gussone HA (1983) Die Praxis der Kalkung im Walde der Bundesrepublik Deutschland. Forst und Holz 38:63–71Google Scholar
  20. Hallbäcken L, Tamm CO (1986) Changes in soil acidity from 1927 to 1982–1984 in a forest area of south-west Sweden. Scan J For Res 1:219–232CrossRefGoogle Scholar
  21. Handbuch Forstliche Analytik (2005) Eine Loseblatt-Sammlung der Analysemethoden im Forstbereich.
  22. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Internat J Climat 25:1965–1978CrossRefGoogle Scholar
  23. Huber C, Baier R, Göttlein A, Weis W (2006a) Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Höglwald, Germany. For Ecol Manag 233:11–20CrossRefGoogle Scholar
  24. Huber C, Weis W, Göttlein A (2006b) Tree nutrition of Norway spruce as modified by liming and experimental acidification at the Höglwald site, Germany, from 1982 to 2004. Ann For Sci 63:861–869CrossRefGoogle Scholar
  25. Hüttl RF (1991) Die Nährelementversorgung geschädigter Wälder in Europa und Nordamerika, Freiburger Bodenkundliche Abhandlungen, issue 28. Freiburg im Breisgau, 440 pGoogle Scholar
  26. Ingerslev M (1997) Effects of liming and fertilization on growth, soil chemistry and soil water chemistry in a Norway spruce plantation on a nutrient-poor soil in Denmark. For Ecol Manag 92:55–66CrossRefGoogle Scholar
  27. Jonard M, André F, Giot P, Weissen F, van der Perre R, Ponette Q (2010) Thirteen-year monitoring of liming and PK fertilization effects on tree vitality in Norway spruce and European beech stands. Europ J For Res 129:1203–1211CrossRefGoogle Scholar
  28. Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760CrossRefGoogle Scholar
  29. König N, Fortmann H (1996) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungsmethoden des Umweltanalytiklabors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabor II des Forschungszentrums Waldökosysteme. Berichte des Forschungszentrums Waldökosysteme, GöttingenGoogle Scholar
  30. König N, Fortmann H (1999) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungsmethoden des Umweltanalytiklabors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabor II des Forschungszentrums Waldökosysteme. Berichte des Forschungszentrums Waldökosysteme, GöttingenGoogle Scholar
  31. König N, Fortmann H, Lüter K-L (2009) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs-Methoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt, Berichte des Forschungszentrums Waldökosysteme, Bd. 75, Reihe B. Göttingen, 364 p.
  32. Kreutzer K (1995) Effects of forest liming on soil processes. Plant Soil 168–169:447–470CrossRefGoogle Scholar
  33. Laudelout H (1993) Chemical and microbiological effects of soil liming in a broad-leaved forest ecosystem. For Ecol Manag 61:247–261CrossRefGoogle Scholar
  34. Löfgren S, Cory N, Zetterberg T, Larsson P-E, Kronnäs V (2009) The long-term effects of catchment liming and reduced sulphur deposition on forest soils and runoff chemistry in southwest Sweden. For Ecol Manag 258:567–578CrossRefGoogle Scholar
  35. Ludwig B, Deutschmann G, Xu YY (2000) Acidification of solid and solution phases at greater depths (>150 cm) at Solling Spruce Site. Water Air Soil Pollut 120:89–105CrossRefGoogle Scholar
  36. Ludwig B, Rumpf S, Mindrup M, Meiwes KJ, Khanna PK (2002) Effects of lime and wood-ash in soil-solution chemistry, soil chemistry and nutritional status of a pine stand in Northern Germany. Scan J For Res 17:225–237Google Scholar
  37. Lundström US, Bain DC, Taylor AFS, van Hees PAW (2003) Effects of acidification and its mitigation with lime and wood ash on forest soil processes: a review. Water Air Soil Pollut Focus 3:5–28Google Scholar
  38. Mahmood Z, Khan S (2009) On the use of K-fold cross-validation to choose cutoff values and assess the performance of predictive models in stepwise regression. Internat J Biostat 5 (Article 25)Google Scholar
  39. Malessa V (1995) Soil acidification gradients: mode of development, status quo and classification. Water Air Soil Pollut 84:303–321CrossRefGoogle Scholar
  40. Mantel N (1970) Why stepdown procedures in variable selection. Technometrics 12:621–625CrossRefGoogle Scholar
  41. Matzner E, Khanna PK, Meiwes KJ, Ulrich B (1985) Effects of fertilization and liming on the chemical soil conditions and element distribution in forest soils. Plant Soil 87:405–415CrossRefGoogle Scholar
  42. McCabe GJ, Markstrom SL (2007) A monthly water-balance model driven by a graphical user interface, Open-File report 2007-1088. US Geol SurveyGoogle Scholar
  43. Meiwes KJ (1995) Application of lime and wood ash to decrease acidification of forest soils. Water Air Soil Pollut 85:143–152CrossRefGoogle Scholar
  44. Meiwes KJ, Khanna PK, Ulrich B (1986) Parameters for describing soil acidity and their relevance to the stability of forest ecosystems. For Ecol Manag 15:161–179CrossRefGoogle Scholar
  45. Meiwes KJ, Mindrup M, Khanna PK (2002) Retention of Ca and Mg in the forest floor of a spruce stand after application of various liming materials. For Ecol Manag 159:27–36CrossRefGoogle Scholar
  46. Mindrup M (2001) Das Lösungs- und Neutralisationsverhalten von dolomitischen Kalken in sauren Waldböden, Berichte des Forschungszentrums Waldökosysteme, Bd. 175, Reihe A, 308 pGoogle Scholar
  47. Montgomery DC, Peck EA (1992) Introduction to linear regression analysis. Wiley, New YorkGoogle Scholar
  48. Moore J-D, Duchesne L, Ouimet R (2008) Soil properties and maple–beech regeneration a decade after liming in a northern hardwood stand. For Ecol Manag 255:3460–3468CrossRefGoogle Scholar
  49. Nilsson SI, Andersson S, Valeur I, Persson T, Bergholm J, Wirén A (2001) Influence of dolomite lime on leaching and storage of C, N and S in a Spodosol under Norway spruce (Picea abies (L.) Karst.). For Ecol Manag 146:55–73CrossRefGoogle Scholar
  50. Nohrstedt H-Ö (2002) Effects of liming and fertilization (N, PK) on chemistry and nitrogen turnover in acidic forest soils in SW Sweden. Water Air Soil Pollut 139:343–354CrossRefGoogle Scholar
  51. Olsson MT, Erlandsson M, Lundin L, Nilsson T, Nilsson A, Stendahl J (2009) Organic carbon stocks in Swedish Podzol soils in relation to soil hydrology and other site characteristics. Silva Fennica 43:209–222Google Scholar
  52. Paltineanu C, Tanasescu N, Chitu E, Mihailescu IF (2007) Relationships between the De Martonne aridity index and water requirements of some representative crops: a case study from Romania. Internat Agrophys 21:81–93Google Scholar
  53. Peña EA, Slate EH (2006) Global validation of linear model assumptions. J Am Stat Assoc 101:341–354PubMedCrossRefGoogle Scholar
  54. Penne C, Ahrends B, Deurer M, Böttcher J (2010) The impact of the canopy structure on the spatial variability in forest floor carbon stocks. Geoderma 158:282–297CrossRefGoogle Scholar
  55. Persson T, Wirén A, Andersson S (1990) Effects of liming on carbon and nitrogen mineralization in coniferous forests. Water Air Soil Pollut 54:351–364Google Scholar
  56. Pinto PE, Gégout JC (2005) Assessing the nutritional and climatic response of temperate tree species in the Vosges Mountains. Ann For Sci 62:761–770CrossRefGoogle Scholar
  57. Pollehn, J (2011) Kalkabsatz in der deutschen Forstwirtschaft. DHG—Düngekalkhauptgemeinschaft, Bonn und Statistisches Bundesamt, Wiesbaden (written communication)Google Scholar
  58. Pretzsch H (2002) Application and evaluation of the growth simulator SILVA 2.2 for forest stands, forest estates and large regions. Forstwiss Centralbl 121:28–51CrossRefGoogle Scholar
  59. R Development Core Team (2009) R: a language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical ComputingGoogle Scholar
  60. Reuss JO (1983) Implications of the calcium-aluminum exchange system for the effect of acid precipitation on soils. J of Environ Qual 12:591–595CrossRefGoogle Scholar
  61. Røsberg I, Frank J, Stuanes AO (2006) Effects of liming and fertilization on tree growth and nutrient cycling in a Scots pine ecosystem in Norway. For Ecol Manag 237:191–207CrossRefGoogle Scholar
  62. Schulze A, Hövelmann T, Meiwes KJ, Evers J, Mindrup M (2008) Grundlagen und Möglichkeiten automatisierter Auswertungen bodenkundlicher Daten mit den ECO-Datenbankanwendungen STOKman V3.64/V3.92 und RASTAman V0.29. NW-FVA. GöttingenGoogle Scholar
  63. Schwertmann U, Süsser P, Nätscher L (1987) Protonenpuffersubstanzen in Böden. Z Pflanzenernaehr Bodenk 150:174–178CrossRefGoogle Scholar
  64. Stendahl J, Johansson MB, Eriksson E, Nilsson A, Langvall O (2010) Soil organic carbon in swedish spruce and pine forests—differences in stock levels and regional patterns. Silva Fennica 44:5–21Google Scholar
  65. Strickland TC, Fitzgerald JW, Swank WT (1984) Mobilization of recently formed forest soil organic sulfur. Can J For Res 14:63–67CrossRefGoogle Scholar
  66. Sverdrup H, Warfvinge P (1993) Calculating field weathering rates using a mechanistic geochemical model PROFILE. Appl Geochem 8:273–283CrossRefGoogle Scholar
  67. Sverdrup H, Warfvinge P, Nihlgaard B (1994) Assessment of soil acidification effects on forest growth in Sweden. Water Air Soil Pollut 78:1–36CrossRefGoogle Scholar
  68. Ulrich B (1981) Theoretische Betrachtung des Ionenkreislaufs in Waldökosystemen. Z Pflanzenernaehr Bodenk 144:647–659CrossRefGoogle Scholar
  69. Ulrich B (1986) Die Rolle der Bodenversauerung beim Waldsterben: Langfristige Konsequenzen und forstliche Möglichkeiten. Forstwiss Centralbl 105:421–435CrossRefGoogle Scholar
  70. Walse C, Berg B, Sverdrup H (1998) Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity. Environ Rev 6:25–40CrossRefGoogle Scholar
  71. Weber-Blaschke G, Claus M, Rehfuess KE (2002) Growth and nutrition of ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.) on soils of different base saturation in pot experiments. For Ecol Manag 167:43–56CrossRefGoogle Scholar
  72. Zirlewagen D, Wilpert K (2010) Upscaling of environmental information: Support of land-use management decisions by spatio-temporal regionalization approaches. Environ Manag 46:878–893CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anja Guckland
    • 1
  • Bernd Ahrends
    • 1
  • Uwe Paar
    • 1
  • Inge Dammann
    • 1
  • Jan Evers
    • 1
  • Karl Josef Meiwes
    • 1
  • Egbert Schönfelder
    • 1
  • Thomas Ullrich
    • 2
  • Michael Mindrup
    • 1
  • Nils König
    • 1
  • Johannes Eichhorn
    • 1
  1. 1.Northwest German Forest Research StationGöttingenGermany
  2. 2.Hessen-ForstGiessenGermany

Personalised recommendations