Advertisement

European Journal of Forest Research

, Volume 131, Issue 5, pp 1337–1353 | Cite as

Validation of DNA barcoding as an efficient tool for taxon identification and detection of species diversity in Italian conifers

  • Laura Armenise
  • Marco C. Simeone
  • Roberta Piredda
  • Bartolomeo Schirone
Original Paper

Abstract

DNA barcoding may be particularly important in impacting the current trends of world’s biodiversity crisis, public economic issues and science. Forests play a crucial role in self-sustaining natural ecosystems and human environment at both local and regional scales. Over 39% of the world’s forests are formed by conifers; most species are highly exposed to threats and exploited at high frequency. Conifers have an urgent need to be identified through DNA barcodes, but received little attention up to date. The application of standard barcoding protocols appears to be hampered by a lack of consensus on the selection of markers and low rates of successful species identification. We examined whether four marker regions (trnh-psba, rbcL, rpoc1 and matK) matched conifer species taxonomy in a practical biodiversity survey of Italian forested land. Our objective was to provide a test of future in situ applications of DNA barcodes by evaluating the efficacy of species discrimination under the criteria of uniformity of methods and natural co-occurrence of the species. Twenty-five conifer species were included in a floristic study based on regional samplings. Genetic distance, similarity and phylogeny approaches were used to assess identification of taxa and species monophyly. We obtained 100% total discrimination success, with rbcL + trnH-psbA as the suggested two-locus barcode in terms of universality and efficacy. Consistent barcoding gaps, supported monophyly and regional patterns of diversity, were evidenced. Species requiring further investigation to be fully assessed at a broader context are indicated. We conclude that the time seems now ripe for coherent barcoding campaigns of entire forest tree regional floras.

Keywords

Biodiversity DNA barcoding Conifers Italy Regional sampling 

Notes

Acknowledgments

We would like to thank all the personnel of the National Forest Service and protected areas who actively assisted and collaborated to sample collection, in particular Parco Nazionale d’Abruzzo, Lazio e Molise, Parco Naturale Regionale delle Serre (VV), Parco Naturale Regionale delle Madonie (PA), Parco Naturale Orsiera Rocciavrè (TO), Azienda forestale demaniale della Regione Sicilia, Stazione Forestale di Curon Venosta (BZ) and Ufficio territoriale per la Biodiversità di Punta Marina (RA). John Forcone (Parco Nazionale della Majella) is kindly acknowledged for his valuable technical support. Authors belong to FORBOL (National Center of Barcoding Studies in Forest species), a network of Italian institutions committed to developing, testing and using barcodes in forest ecosystems, promoted by the Latium Administrative Region.

Supplementary material

10342_2012_602_MOESM1_ESM.doc (41 kb)
Supplementary material 1 (DOC 41 kb)

References

  1. Adams RP, Bartel JA, Price RA (2009) A new genus, Hesperocyparis, for the cypresses of the western hemisphere. Phytol 91:160–179Google Scholar
  2. Bagnoli F, Vendramin GG, Buonamici A, Doulis AG, Gonzalez-Martinez SC, La Porta N, Magri D, Raddi P, Sebastiani F, Fineschi S (2009) Is Cupressus sempervirens native in Italy? An answer from genetic and palaeobotanical data. Mol Ecol 18:2276–2286. doi: 10.1111/j.1365-294X.2009.04182.x PubMedCrossRefGoogle Scholar
  3. Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, OxfordGoogle Scholar
  4. Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097. doi: 10.1073/pnas.97.8.4092 PubMedCrossRefGoogle Scholar
  5. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797. doi: 10.1073/pnas.0905845106 CrossRefGoogle Scholar
  6. Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haider N, Savolainen V (2005) Land plants and DNA barcodes: short-term and long-term goals. Phil Trans R Soc B 360:1889–1895. doi: 10.1098/rstb.2005.1720 PubMedCrossRefGoogle Scholar
  7. Chase MW, Cowan RS, Hollingsworth PM et al (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299Google Scholar
  8. Chaw SM, Walters TW, Chang CC, Hu SH, Chen SH (2005) A phylogeny of cycads (Cycadales) inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region. Mol Phyl Evol 37:214–234. doi: 10.1016/j.ympev.2005.01.006 CrossRefGoogle Scholar
  9. Collignon AM, Favre JM (2000) Contribution to the postglacial history at the western margin of Picea abies natural area using RAPD markers. Ann Bot 85:713–722. doi: 10.1006/anbo.2000.1119 CrossRefGoogle Scholar
  10. Conkle MT, Schiller G, Grunwald C (1988) Electrophoretic analysis of diversity and phylogeny of Pinus brutia and closely related taxa. Syst Bot 13:411–424CrossRefGoogle Scholar
  11. Du FK, Petit RJ, Liu JQ (2009) More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other Conifers. Mol Ecol 18:1396–1407. doi: 10.1111/j.1365-294X.2009.04107.x PubMedCrossRefGoogle Scholar
  12. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 19:1792–1797. doi: 10.1093/nar/gkh340 CrossRefGoogle Scholar
  13. FAO (2010) World forest resources assessment. Food and Agricultural Organizations of the United Nations, http://www.fao.org. Accessed 2 Apr 2011
  14. Farjon A (2001) World checklist and bibliography of conifers. The Royal Botanic Gardens, KewGoogle Scholar
  15. Farjon A (2008) A natural history of conifer. Timber Press, PortlandGoogle Scholar
  16. Farjon A, Page CN (1999) Conifers. Status Survey and Conservation Action Plan, IUCN/SSC Conifer Specialist Group. IUCN, GlandGoogle Scholar
  17. Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW et al (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One 3:e282. doi: 10.1371/journal.pone.0002802 CrossRefGoogle Scholar
  18. Fazekas AJ, Kesanakurti PR, Burgess KS, Percy DM et al (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol Ecol Res 9:130–139. doi: 10.1111/j.1755-0998.2009.02652.x CrossRefGoogle Scholar
  19. Follieri M (2010) Conifer extinctions in Quaternary Italian records. Quat Int 225:37–43. doi: 10.1016/j.quaint.2010.02.001 CrossRefGoogle Scholar
  20. Ford CS, Ayres KL, Toomey N, Haider N, Van Alphen Stahl J, Kelly LJ, Wikström N, Hollingsworth PM, Duff RJ, Hoot SB, Cowan RS, Chase MW, Wilkinson MJ (2009) Selection of candidate coding DNA barcoding regions for use on land plants’. Bot J Linn Soc 159:1–11. doi: 10.1111/j.1095-8339.2008.00938.x Google Scholar
  21. Funk DJ, Omland KE (2003) Species-level monophyly and paraphyly: frequency, causes and consequences with insights from animal mitochondrial DNA. Ann Rev Ecol Evol Syst 34:397–423. doi: 10.1146/annurev.ecolsys.34.011802.132421 CrossRefGoogle Scholar
  22. Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 12:543–548. doi: 10.1093/bioinformatics/12.6.543 CrossRefGoogle Scholar
  23. Gao T, Yao H, Song J, Liu C, Zhua Y, Ma X, Pang X, Xu H, Chen S (2010) Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol 130:116–121. doi: 10.1016/j.jep.2010.04.026 PubMedCrossRefGoogle Scholar
  24. Gellini R, Grossoni P (1997) Botanica forestale. CEDAM, PadovaGoogle Scholar
  25. Gernandt DS, Lopez G, Garcia SO, Liston A (2005) Phylogeny and classification of Pinus. Taxon 54:29–42CrossRefGoogle Scholar
  26. Gonzalez MA, Baraloto C, Engel J, Mori SA, Petronelli P, Riera B, Roger A, Thebaud C, Chave J (2009) Identification of Amazonian trees with DNA barcode. PLoS One 4:e7483. doi: 10.1371/journal.pone.0007483 PubMedCrossRefGoogle Scholar
  27. Greenstone MH, Rowley DL, Heimbach U, Lundgren JG, Pfannenstiel RS, Rehner SA (2005) Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Mol Ecol 14:2347–3266. doi: 10.1111/j.1365-294X.2005.02628.x CrossRefGoogle Scholar
  28. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971. doi: 10.1073/pnas.0510466103 PubMedCrossRefGoogle Scholar
  29. Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species’. Proc R Soc Lond B 270:S96–S99CrossRefGoogle Scholar
  30. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312. doi: 10.1371/journal.pbio.0020312 PubMedCrossRefGoogle Scholar
  31. Hollingsworth PM (2007) DNA barcoding: potential users. Genomics Soc Policy 3:44–47Google Scholar
  32. Hollingsworth ML, Clark AA, Forrest LL, Richardson J, Pennington RT et al (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Res 9:439–457. doi: 10.1111/j.1755-0998.2008.02439.x CrossRefGoogle Scholar
  33. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a Plant DNA barcode. PLoS One 6:e19254. doi: 10.1371/journal.pone.0019254 PubMedCrossRefGoogle Scholar
  34. IUCN (2010) IUCN red list of threatened species, version 2010.4. http://www.iucnredlist.org. Downloaded on 17 Feb 2011
  35. Korol L, Shklar G, Schiller G (2002) Diversity among circum-Mediterranea populations of Aleppo pine and differentiation from Brutia pine in their isoenzymes: additional results. Silvae Genet 51:35–41Google Scholar
  36. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region’. PLoS One 6:e508. doi: 10.1371/journal.pone.0000508 CrossRefGoogle Scholar
  37. Kress WJ, Erickson DL (2008) DNA barcodes: genes, genomics, and bioinformatics. Proc Natl Acad Sci USA 105:2761–2762. doi: 10.1073/pnas.0800476105 PubMedCrossRefGoogle Scholar
  38. Kress WJ, Wurdack KJ, Zimmer EA, Weight LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374. doi: 10.1073/pnas.0503123102 PubMedCrossRefGoogle Scholar
  39. Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R et al (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci USA 106:18621–18626. doi: 10.1073/pnas.0909820106 PubMedCrossRefGoogle Scholar
  40. Kress WJ, Erickson DL, Swenson NG, Thompson J, Uriarte M, Zimmerman JK (2010) Advances in the use of DNA Barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot. PLoS One 5:e15409. doi: 10.1371/journal.pone.0015409 PubMedCrossRefGoogle Scholar
  41. Lahaye R, van der Bank M, Bogarin D et al (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Scie USA 105:2923–2928. doi: 10.1073/pnas.0709936105 CrossRefGoogle Scholar
  42. Le Gall L, Saunders GW (2010) DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gygartinales, Rhodophya) in the Canadian flora. J Phycol 46:374–389. doi: 10.1111/j.1529-8817.2010.00807.x CrossRefGoogle Scholar
  43. Liepelt S, Cheddadi R, Debeaulieu J, Fady B, Gomory D, Hussendorfer E, Konnert M, Litt T, Longauer R, Terhurneberson R (2009) Postglacial range expansion and its genetic imprints in Abies alba (Mill.)—a synthesis from palaeobotanic and genetic data. Rev Palaeobot Palino 153:139–149. doi: 10.1016/j.revpalbo.2008.07.007 CrossRefGoogle Scholar
  44. Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM (2010) Comparative chloroplast genomics reveals the evolution of Pinaceae Genera and subfamilies. Genome Biol Evol 2:504–517. doi: 10.1093/gbe/evq036 PubMedCrossRefGoogle Scholar
  45. Little DP (2006) Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Syst Bot 31:461–480. doi: 10.1600/036364406778388638 CrossRefGoogle Scholar
  46. Little DP, Stevenson DW (2007) A comparison of algorithms for the identification of specimens using DNA barcodes: Examples from gymnosperms. Cladistics 23:1–21. doi: 10.1111/j.1096-0031.2006.00126.x CrossRefGoogle Scholar
  47. Liu J, Moller M, Gao LM, Zhang DQ, Zhuki DE (2011) DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol Ecol Res 11:89–100. doi: 10.1111/j.1755-0998.2010.02907.x CrossRefGoogle Scholar
  48. Luo K, Chen S, Chen KL, Song JY, Yao H, Ma XY, Zhu YJ, Pang XH, Yu H, Li XW, Liu Z (2010) Assessment of candidate plant DNA barcodes using the Rutaceae family. Sci China Ser B 53:701–708. doi: 10.1007/s11427-010-4009-1 Google Scholar
  49. Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536. doi: 10.1093/sysbio/46.3.523 CrossRefGoogle Scholar
  50. Medail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean basin. J Biogeogr 36:1333–1345. doi: 10.1111/j.1365-2699.2008.02051.x CrossRefGoogle Scholar
  51. Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants’. Am J Bot 83:383–404CrossRefGoogle Scholar
  52. Newmaster SG, Ragupathy S (2009) Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol Ecol Res 9:172–180. doi: 10.1111/j.1755-0998.2009.02642.x CrossRefGoogle Scholar
  53. Newmaster SG, Fazekas AJ, Steeves RAD, Janovec J (2008) Testing candidate plant barcode regions in the Myristicaceae. Mol Ecol Res 8:480–490. doi: 10.1111/j.1471-8286.2007.02002.x CrossRefGoogle Scholar
  54. Pavoine S, Vela E, Gachet S, de Belair G, Bonsall MB (2011) Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly. J Ecol 99:165–175. doi: 10.1111/j.1365-2745.2010.01743.x CrossRefGoogle Scholar
  55. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Ann Rev Ecol Evol Syst 37:187–214. doi: 10.1146/annurev.ecolsys.37.091305.110215 CrossRefGoogle Scholar
  56. Piredda R, Simeone MC, Attimonelli M, Bellarosa R, Schirone B (2011) Prospects of barcoding the Italian wild dendroflora: oaks reveal severe limitations to tracking species identity. Mol Ecol Res 11:72–83. doi: 10.1111/j.1755-0998.2010.02900.x CrossRefGoogle Scholar
  57. Ran JH, Wang PP, Zhao HJ, Wang XQ (2010) A test of seven candidate barcode regions from the plastome in Picea (Pinaceae). J Integr Plant Biol 52:1109–1126. doi: 10.1111/j.1744-7909.2010.00995.x PubMedCrossRefGoogle Scholar
  58. Ren BQ, Xiang XG, Chen ZD (2010) Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers. Mol Ecol Res 10:594–605. doi: 10.1111/j.1755-0998.2009.02815.x CrossRefGoogle Scholar
  59. Rieseberg LH (1997) Hybrid origins of plant species. Ann Rev Ecol Syst 28:359–389. doi: 10.1146/annurev.ecolsys.28.1.359 CrossRefGoogle Scholar
  60. Robba L, Russell SJ, Barker GL, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93:1101–1108. doi: 10.3732/ajb.93.8.1101 PubMedCrossRefGoogle Scholar
  61. Roy S, Tyagi A, Shukla V, Kumar A, Singh UM et al (2010) Universal plant DNA barcode loci may not work in complex groups: a case study with Indian Berberis species. PLoS One 5:e13674. doi: 10.1371/journal.pone.0013674 PubMedCrossRefGoogle Scholar
  62. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae)’. Am J Bot 84:1120–1136PubMedCrossRefGoogle Scholar
  63. Sass C, Little DP, Stevenson DM, Specht CD (2007) DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of Cycads. PLoS One 2:e1154. doi: 10.1371/journal.pone.0001154 PubMedCrossRefGoogle Scholar
  64. Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Res 9:83–89. doi: 10.1111/j.1755-0998.2009.02635.x CrossRefGoogle Scholar
  65. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J et al (2007) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166. doi: 0.3732/ajb.92.1.142 CrossRefGoogle Scholar
  66. Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322:86–89. doi: 10.1126/science.1163197 PubMedCrossRefGoogle Scholar
  67. Smith MA, Poyarkov NAJ, Hebert PDN (2008) CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol Ecol Res 8:235–246. doi: 10.1111/j.1471-8286.2007.01964.x CrossRefGoogle Scholar
  68. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771. doi: 10.1080/10635150802429642 CrossRefGoogle Scholar
  69. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  70. von Cräutlein M, Korpelainen H, Pietiläinen M, Rikkinen J (2011) DNA barcoding: a tool for improved taxon identification and detection of species diversity. Biodiv Conserv 20:373–380. doi: 10.1007/s10531-010-9964-0 CrossRefGoogle Scholar
  71. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc B 360:1847–1857. doi: 10.1098/rstb.2005.1716 PubMedCrossRefGoogle Scholar
  72. Whitlock BA, Hale AM, Groff PA (2010) Intraspecific inversions pose a challenge for the trnH-psbA plant DNA Barcode. PLoS One 5:e11533. doi: 10.1371/journal.pone.0011533 PubMedCrossRefGoogle Scholar
  73. Zhang JM, Wang JX, Xia T, Zhou SL (2009) DNA barcoding: species delimitation in tree peonies. Sci China Ser C 52:568–578. doi: 10.1007/s11427-009-0069-5 CrossRefGoogle Scholar
  74. Zhang J, Mi X, Pei N (2010) Phylogenetic tools for ecologists. Available at: http://cran.r-project.org/web/packages/phylotools/

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Laura Armenise
    • 1
  • Marco C. Simeone
    • 1
  • Roberta Piredda
    • 1
    • 2
  • Bartolomeo Schirone
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie per l’Agricoltura, le Foreste, la Natura e l’Energia (D.A.F.N.E.)Università della TusciaViterboItaly
  2. 2.Dipartimento di Biochimica e Biologia Molecolare ‘E. Quagliariello’Università di BariBariItaly

Personalised recommendations