European Journal of Forest Research

, Volume 131, Issue 5, pp 1327–1335 | Cite as

Comparing the use of leaf and soil analysis as N and P availability indices in a wildfire chronosequence

  • Jorge Durán
  • Alexandra Rodríguez
  • Felisa Covelo
  • José María Fernández-Palacios
  • Antonio Gallardo
Original Paper


Two types of measures have traditionally been used to monitor changes after disturbances in the nutrient availability of forest ecosystems: (1) soil nutrient pools and transformation rates and (2) foliar nutrient content. We used a wildfire chronosequence in natural and unmanaged Pinus canariensis forests to determine which kind of measure is more effective in discriminating between disturbed and undisturbed plots and to determine whether the different availability indices provide comparable and consistent results within the chronosequence and between different sampling dates. The results showed that (1) foliar N and P concentrations were the variables that best discriminated between the plots of the chronosequence, (2) the various soil N availability indices neither showed steady relationships nor predicted the plant nutrient availability, and (3) P availability indices showed steady relationships and predicted plant nutrient availability. Due to the changing nature of the soil N pools, repeated sampling over a long period of time could yield results different from those presented here. However, the large sampling effort required would favor the use of foliar nutrient concentrations as the most desirable first approach to the community’s nutritional status, especially when time or budget constraints are relevant.


PCA Pine Nitrogen Phosphorus Nutrient status 



We thank the La Palma Government for enabling access and providing logistic support for the sampling expeditions, and Javier Méndez, Gustavo Morales, Felix Medina, Alfredo Bermúdez, Rocío Paramá, Rosana Estévez, Feliciano Martínez, and Jesús Rodríguez for their valuable help with the field sampling and laboratory analysis. We also thank Jen Morse for her valuable help in editing the manuscript. This work was financed by the Ministerio de Ciencia y Tecnología of the Spanish Government (REN 2003-08620-C0201; CGL 2006-13665-C02-01).


  1. Adams AS, Rieske LK (2003) Prescribed fire affects white oak seedling phytochemistry: implications for insect herbivory. For Ecol Manage 176:37–47. doi: 10.1016/S0378-1127(02)00223-2 CrossRefGoogle Scholar
  2. Aerts R, Chapin FSIII (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–68CrossRefGoogle Scholar
  3. Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. In: Moore PD, Chapman SB (eds) Methods in plant ecology. Blackwell Scientific Publications, Oxford, pp 285–344Google Scholar
  4. Binkley D, Hart SC (1989) The components of nitrogen availability in forest soils. Advances Soil Sci 10:57–112CrossRefGoogle Scholar
  5. Bridham SD, Updegraf K, Pastor J (2001) A comparison of nutrient availability indices along an ombrotrophic-minerotrophic gradient in Minnesota Wetlands. Soil Sci Soc Am J 65:259–269CrossRefGoogle Scholar
  6. Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329. doi: 10.1016/0038-0717(82)90001-3 CrossRefGoogle Scholar
  7. Cabrera ML, Beare MH (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–1012. doi: 10.2136/sssaj1993.03615995005700040021x CrossRefGoogle Scholar
  8. Cain ML, Subler S, Evans JP, Fortin MJ (1999) Sampling spatial and temporal variation in soil nitrogen availability. Oecologia 118:397–404. doi: 10.1007/s004420050741 CrossRefGoogle Scholar
  9. Chapin FS III, Vitousek PM, Van Cleve K (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58CrossRefGoogle Scholar
  10. Christensen NL (1977) Fire and soil-plant nutrient relations in a pine-wiregrass savanna on the coastal plain of North Carolina. Oecologia 31:27–44. doi: 10.1007/BF00348706 CrossRefGoogle Scholar
  11. Climent J, Tapias R, Pardos JA, Gil L (2004) Fire adaptations in the Canary Islands pine (Pinus canariensis). Plant Ecol 171:185–196. doi: 10.1023/B:VEGE.0000029374.64778.68 CrossRefGoogle Scholar
  12. D’Angelo E, Crutchfield J, Vandiviere M (2001) Rapid, sensitive, microscale determination of phosphate in water. J Environ Qual 30:2206–2209PubMedCrossRefGoogle Scholar
  13. D’Elia CF, Steudler PA, Corwin N (1977) Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol Oceanogr 22:760–764CrossRefGoogle Scholar
  14. Doyle A, Weintraub MN, Schimel JP (2004) Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts. Soil Sci Soc Am J 68:669–676. doi: 10.2136/sssaj2004.0669 CrossRefGoogle Scholar
  15. Durán J, Rodríguez A, Fernández-Palacios JM, Gallardo A (2008) Changes in soil N and P availability in a Pinus canariensis fire chronosequence. For Ecol Manage 256:384–387. doi: 10.1016/j.foreco.2008.04.033 CrossRefGoogle Scholar
  16. Durán J, Rodríguez A, Fernández-Palacios JM, Gallardo A (2009) Changes in net N mineralization rates and soil N and P pools in a pine forest wildfire chronosequence. Biol Fertil Soils 45:781–788. doi: 10.1007/s00374-009-0389-4 CrossRefGoogle Scholar
  17. Durán J, Rodríguez A, Fernández-Palacios JM, Gallardo A (2010a) Long-term decrease of organic and inorganic nitrogen concentrations due to pine forest wildfire. Ann Forest Sci 67:207. doi: 10.1051/forest/2009100 CrossRefGoogle Scholar
  18. Durán J, Rodríguez A, Fernández-Palacios JM, Gallardo A (2010b) Changes in leaf nutrient traits in a wildfire chronosequence. Plant Soil 331:69–77. doi: 10.1007/s11104-009-0232-6 CrossRefGoogle Scholar
  19. Eno CF (1960) Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci Soc Am Proc 24:277–279CrossRefGoogle Scholar
  20. Foulds W (1993) Nutrient concentrations of foliage and soil in South-western Australia. New Phytol 125:529–546CrossRefGoogle Scholar
  21. Frank DA, Groffman PM (2009) Plant rhizospheric N processes: what we don’t know and why we should care. Ecology 90:1512–1519. doi: 10.1890/08-0789.1 PubMedCrossRefGoogle Scholar
  22. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi: 10.1126/science.1136674 PubMedCrossRefGoogle Scholar
  23. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910CrossRefGoogle Scholar
  24. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi: 10.1111/j.1469-8137.2004.01192.x CrossRefGoogle Scholar
  25. Hart SC, DeLuca TH, Newman GS, Mackenzie MD, Boyle SI (2005) Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manage 220:166–184. doi: 10.1016/j.foreco.2005.08.012 CrossRefGoogle Scholar
  26. Hobbie S, Gough L (2002) Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131:453–462CrossRefGoogle Scholar
  27. Huang J, Boerner R (2007) Effects of fire alone or combined with thinning on tissue nutrient concentrations and nutrient resorption in Desmodium nudiflorum. Oecologia 153:233–243. doi: 10.1007/s00442-007-0733-z PubMedCrossRefGoogle Scholar
  28. IUSS Working Group WRB (2006) World reference base for soil resources 2006, 2nd edn. World Soil Resources Reports No. 103. FAO, RomeGoogle Scholar
  29. Jenny H (1980) The soil resource. Origin and behavior. Springer, New YorkGoogle Scholar
  30. Knoepp JD, Vose JM, Swank WT (2004) Long-term soil responses to site preparation burning in the southern Appalachians. Forest Sci 50:540–550Google Scholar
  31. Koerselman W, Meuleman AFM (1996) The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450CrossRefGoogle Scholar
  32. Koerselman W, Verhoeven JTA (1995) Eutrophication of fen ecosystems; external and internal sources and restoration strategies. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 91–112Google Scholar
  33. Kutiel P, Naveh Z (1987) The effect of fire on nutrients in a pine forest soil. Plant Soil 104:269–274. doi: 10.1007/BF02372541 CrossRefGoogle Scholar
  34. Luis VC, Puértolas J, Climent J, Peters J, González-Rodríguez ÁM, Morales D, Jiménez MS (2009) Nursery fertilization enhances survival and physiological status in Canary Island pine (Pinus canariensis) seedlings planted in a semiarid environment. Eur J For Res 128:221–229. doi: 10.1007/s10342-009-0257-7 CrossRefGoogle Scholar
  35. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  36. Mengel K, Kirby EA (2001) Principles of plant nutrition, 5th edn. Kluwer, DordrechtCrossRefGoogle Scholar
  37. Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71. doi: 10.1016/S0378-1127(99)00032-8 CrossRefGoogle Scholar
  38. Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Methods of soil analysis. Part 3, Chemical methods. Soil Sci Soc Am and Am Soc Agron SSSA Book Ser. no. 5Google Scholar
  39. Otto R, García-Del-Rey E, Gil Muñoz P, Fernández-Palacios JM (2010) The effect of fire severity on first-year seedling establishment in a Pinus canariensis forest on Tenerife, Canary Islands. Eur J Forest Res 129:499–508. doi: 10.1007/s10342-009-0347-6 CrossRefGoogle Scholar
  40. Palese AM, Giovannini G, Lucchesi G, Dumonet S, Perucci P (2004) Effects of fire on soil C, N and microbial biomass. Agronomie 24:47–53CrossRefGoogle Scholar
  41. Pastor J, Bridgham SD (1999) Nutrient efficiency along nutrient availability gradients. Oecologia 118:50–58. doi: 10.1007/s004420050702 PubMedCrossRefGoogle Scholar
  42. R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Scheuner ET, Makeschin F, Wells ED, Carter PQ (2004) Short-term impacts of harvesting and burning disturbances on physical and chemical characteristics of forest soils in western Newfoundland, Canada. Eur J Forest Res 123:321–330. doi: 10.1007/s10342-004-0038-2 CrossRefGoogle Scholar
  44. Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San DiegoGoogle Scholar
  45. Sims GK, Ellsworth TR, Mulvaney RL (1995) Microscale determination of inorganic nitrogen in water and soil extracts. Commun Soil Sci Plant Anal 26:303–316. doi: 10.1080/00103629509369298 CrossRefGoogle Scholar
  46. Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:61–64. doi: 10.1038/385061a0 CrossRefGoogle Scholar
  47. Stevenson FJ (1986) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New YorkGoogle Scholar
  48. Tausz M, Trummer W, Wonisch A, Goessler W, Grill D, Jiménez MS, Morales D (2004) A survey of foliar mineral nutrient concentrations of Pinus canariensis at field plots in Tenerife. For Ecol Manage 189:49–55. doi: 10.1016/j.foreco.2003.07.034 CrossRefGoogle Scholar
  49. Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534. doi: 10.1046/j.1365-2664.2003.00820.x CrossRefGoogle Scholar
  50. Thompson K, Parkinson JA, Brand SR, Spencer RE (1997) A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytol 136:679–689CrossRefGoogle Scholar
  51. Townsend AR, Cleveland CC, Gregory PA, Bustamante MMC (2007) Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–118. doi: 10.1890/0012-9658(2007)88[107:COFNRI]2.0.CO;2 PubMedCrossRefGoogle Scholar
  52. Valentine DW, Allen HL (1990) Foliar responses to fertilization identify nutrient limitation in loblolly pine. Can J Forest Res 20:144–151CrossRefGoogle Scholar
  53. Verhoeven JTA, Koerselman W, Meuleman AFM (1996) Nitrogen- or phosphorus- limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends Ecol Evol 11:494–497. doi: 10.1016/S0169-5347(96)10055-0 PubMedCrossRefGoogle Scholar
  54. Vitousek PM (2004) Nutrient cycling and limitation: Hawaii as a model system. Princeton University Press, PrincetonGoogle Scholar
  55. Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75CrossRefGoogle Scholar
  56. Wassen MJ, Venterink HGMO, De Swart E (1995) Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. J Veg Sci 6:5CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jorge Durán
    • 1
  • Alexandra Rodríguez
    • 2
  • Felisa Covelo
    • 2
  • José María Fernández-Palacios
    • 3
  • Antonio Gallardo
    • 2
  1. 1.Cary Institute of Ecosystem StudiesMillbrookUSA
  2. 2.Departamento de Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
  3. 3.Departamento de EcologíaUniversidad de La LagunaLa Laguna, TenerifeSpain

Personalised recommendations