European Journal of Forest Research

, Volume 131, Issue 4, pp 1127–1138 | Cite as

Genetic variation and divergence in Scots pine (Pinus sylvestris L.) within its natural range in Italy

  • P. BellettiEmail author
  • D. Ferrazzini
  • A. Piotti
  • I. Monteleone
  • F. Ducci
Original Paper


Twenty-one populations of Scots pine sampled over the entire Italian range of the species were analysed for genetic variation scored at nine nuclear SSR markers. The main aim of the work was to find genetic features useful for conservation management, namely allelic composition, gene diversity and differentiation. High levels of intra-population variability were scored. The only population sampled in the Apennines gave the lowest values, confirming the genetic erosion undergone in the Scots pine remnants in this area. A low level of genetic variability was also scored for populations from the Po valley and hills of Piedmont. Most genetic diversity was found within populations, while only a small amount occurred among them (F ST = 0.058). Both Bayesian clustering and sPCA analysis showed a East–West subdivision, notwithstanding the unclear position of populations from the Po valley. The population from the Apennines was always clearly separated from the others. The results are discussed in terms of post-glacial recolonisation, as well as for defining genetically homogeneous regions for Scots pine in Italy. The management of genetic resources could benefit from the identification of such ‘gene zones’, thereby avoiding the use of non-local reproductive material for plantations, which can represent one of the most important reasons for failure of reforestation. In addition, the assessment of the biogeographic genetic structure by neutral markers is a prerequisite for disentangling the influence of selectively neutral and non-neutral processes on the distribution of adaptive genetic variability.


Genetic differentiation Genetic variation Glacial refugia Regions of provenance Scots pine SSR markers 



The research was supported by the project ‘RI.SELV.ITALIA’ (task 1.1, Biodiversity and production of forest reproductive material) from the Italian Ministry for Agriculture, Food and Forestry Policy. Thanks are also due to the Italian Ministry of Education, Universities and Research, which partially granted the work (local research funds). Thanks are also due to colleagues from ‘Translations Group’ for the language revision of the manuscript (


  1. Auckland LD, Bui T, Zhou Y, Shepherd M, Williams CG (2002) Conifer microsatellite handbook. Corporate Press, RaleighGoogle Scholar
  2. Bagnoli F, Vendramin GG, Buonamici A, Doulis AG, González-Martínez SC, La Porta N, Magri D, Raddi P, Sebastiani F, Fineschi S (2009) Is Cupressus sempervirens native in Italy? An answer from genetic and palaeobotanical data. Mol Ecol 18:2276–2286PubMedCrossRefGoogle Scholar
  3. Bai WN, Liao WJ, Zhang DY (2010) Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytol 188:892–901PubMedCrossRefGoogle Scholar
  4. Bastien C, Alia R (2000) What might be useful measures of genetic variability for adaptive traits within populations of Scots pine? Invest Agr Sist Recur For 9:97–110Google Scholar
  5. Bucci G, Vendramin GG (2000) Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Mol Ecol 9:923–934PubMedCrossRefGoogle Scholar
  6. Camerano P, Gottero F, Terzuolo P, Varese P (2008) Tipi forestali del Piemonte, 2nd edn. Regione Piemonte, Blu EdizioniGoogle Scholar
  7. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257PubMedGoogle Scholar
  8. Chapuis M, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  9. Chapuis M, Lecoq M, Michalakis Y, Loiseau A, Sword GA, Piry S, Estoup A (2008) Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Mol Ecol 17:640–3653CrossRefGoogle Scholar
  10. Cheddadi R, Vendramin GG, Litt T, François L, Kageyama M, Lorentz S, Laurent JM, De Beaulieu JL, Sadori L, Jost A, Lunt D (2006) Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob Ecol Biogeogr 15:271–282Google Scholar
  11. Chybicki I, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113PubMedCrossRefGoogle Scholar
  12. Di Rienzo AA, Peterson C, Garza JC, Valdes AM, Slatkin M, Freime RB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170PubMedCrossRefGoogle Scholar
  13. Eckert CG, Samis K, Lougheed SC (2008) Genetic variation across species’ ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  14. Eckert AJ, Bower AD, Gonzalez-Martinez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805PubMedCrossRefGoogle Scholar
  15. Elsik CG, Williams CG (2001) Low-copy microsatellite recovery from a conifer genome. Theor Appl Genet 103:1189–1195CrossRefGoogle Scholar
  16. Elsik CG, Minihan VT, Hall SE, Scarpa AM, Williams CG (2000) Low-copy microsatellite markers for Pinus taeda L. Genome 43:550–555PubMedGoogle Scholar
  17. Escudero A, Iriondo JM, Torres ME (2003) Spatial analysis of genetic diversity as a tool for plant conservation. Biol Conserv 113:351–365CrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  19. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  20. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  21. Ferrazzini D, Monteleone I, Belletti P (2008) Small-scale genetic diversity in oneseed hawthorn (Crataegus monogyna Jacq.). Eur J For Res 127:407–414CrossRefGoogle Scholar
  22. Finsinger W, Tinner W, Vanderknaap W, Ammann B (2006) The expansion of hazel (Corylus avellana L.) in the southern Alps: a key for understanding its early Holocene history in Europe? Quat Sci Rev 25:612–631CrossRefGoogle Scholar
  23. González-Martinez SC, Robledo-Arnuncio JJ, Collada C, Díaz A, Williams CG, Alía R, Cervera MT (2004) Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theor Appl Genet 109:103–111PubMedCrossRefGoogle Scholar
  24. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  25. Grivet D, Sebastiani F, Gonzalez-Martinez SC, Vendramin GG (2009) Patterns of polymorphism resulting from long-range colonization in the Mediterranean conifer Aleppo pine. New Phyt 184:1016–1028CrossRefGoogle Scholar
  26. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  27. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124CrossRefGoogle Scholar
  28. Jombart T (2008) adegent: a R package for the multivariate analysis of genetic markers. Bioinformatics 11:1403–1405CrossRefGoogle Scholar
  29. Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103PubMedCrossRefGoogle Scholar
  30. Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103:8096–8100PubMedCrossRefGoogle Scholar
  31. Kalinowski ST (2005) Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity 94:33–36PubMedCrossRefGoogle Scholar
  32. Kaltenrieder P, Belis CA, Hofstetter S, Ammann B, Ravazzi C, Tinner W (2009) Environmental and climatic conditions at a potential glacial refugial site of tree species near the Southern Alpine glaciers. New insights from multiproxy sedimentary studies at Lago della Costa (Euganean Hills, Northeastern Italy). Quat Sci Rev 28:2647–2662CrossRefGoogle Scholar
  33. Karhu A, Hurme P, Karjalainen M, Karvonen P, Kärkkäinen K, Neale D, Savolainen O (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215–221CrossRefGoogle Scholar
  34. Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 4:878–885CrossRefGoogle Scholar
  35. Labra M, Grassi F, Sgorbati S, Ferrari C (2006) Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Apennines. Flora 201:468–476CrossRefGoogle Scholar
  36. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  37. Mason WL, Alia R (2000) Current and future status of Scots pine (Pinus sylvestris L.) forests in Europe. Invest Agr Sist Recur For 9:317–333Google Scholar
  38. Miyamoto N, Fernandez-Manjarres JF, Morand-Prieur ME, Bertolino P, Frascaria-Lacoste N (2008) What sampling is needed for treliable estimations of genetic diversity in Fraxinus excelsior L. (Oleaceae). Ann Sci 65:403–410CrossRefGoogle Scholar
  39. Morandini R, Magini E (1975) Il materiale forestale di propagazione in Italia. Collana Verde n. 34, MAF—Corpo Forestale dello Stato, RomaGoogle Scholar
  40. Müller-Starck G, Baradat PH, Bergmann F (1992) Genetic variation in European tree species. New For 6:23–47CrossRefGoogle Scholar
  41. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788PubMedCrossRefGoogle Scholar
  42. Naydenov K, Senneville S, Beaulieu J, Tremblay F, Bousquet J (2007) Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evol Biol 7:233PubMedCrossRefGoogle Scholar
  43. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Gen 12:111–122CrossRefGoogle Scholar
  44. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  45. Palmberg-Lerche C (2001) Conservation of forest biological diversity and forest genetic resources. For Genet Resour Bull 29:24–26Google Scholar
  46. Pautasso M (2009) Geographical genetics and the conservation of forest trees. Perspect Plant Ecol 11:157–189CrossRefGoogle Scholar
  47. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  48. Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Nonamplifying alleles at microsatellites loci: a caution for parentage and population studies. Mol Ecol 4:249–252PubMedCrossRefGoogle Scholar
  49. Petit R, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol S 37:187–214CrossRefGoogle Scholar
  50. Petit R, Aguinagalde I, Beaulieu J-L, Bittkau C, Brewer S, Cheddiari R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohany A, Müller-Starck G, Demesure-Musch B, Palme A, Martin J, Rendell S, Vendramin G (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565PubMedCrossRefGoogle Scholar
  51. Pignatti A (1982) Flora d’Italia, vol III. Edagricole, BolognaGoogle Scholar
  52. Piotti A, Leonardi S, Piovani S, Scalfi M, Menozzi P (2009) Spruce colonization at treeline: where do those seeds come from? Heredity 103:136–145PubMedCrossRefGoogle Scholar
  53. Piovani P, Leonardi S, Piotti A, Menozzi P (2010) Conservation genetics of small relic populations of Silver Fir (Abies alba Mill.) in northern Apennines. Plant Biosyst 144:683–691CrossRefGoogle Scholar
  54. Piry S, Luikart G, Cornuet J (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  56. Prus-Glowacki W, Urbaniak L, Zubrowska-Gil M (1993) Allozyme differentiation in some European populations of Scots pine (Pinus sylvestris L.). Genetica Polonica 2:159–176Google Scholar
  57. Prus-Głowacki W, Stephan BR, Bujas E, Alia R, Marciniak A (2003) Genetic differentiation of autochthonous populations of Pinus sylvestris (Pinaceae) from Iberian peninsula. Plant Syst Evol 239:55–66CrossRefGoogle Scholar
  58. Puglisi S, Attolico M (2000) Allozyme variation in natural populations of the Italian range of Pinus sylvestris L. For Genet 7:221–232Google Scholar
  59. Pyhäjärvi T, Salmela MJ, Savolainen O (2008) Colonization routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation. Tree Genet Genomes 4:247–254CrossRefGoogle Scholar
  60. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0Google Scholar
  61. Regione Piemonte, Regione Autonoma Valle d’Aosta (2008) Il deperimento del pino silvestre nelle Alpi occidentali: natura e indirizzi di gestione. Compagnia delle Foreste, ArezzoGoogle Scholar
  62. Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11:588–597PubMedCrossRefGoogle Scholar
  63. Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94:13–22PubMedCrossRefGoogle Scholar
  64. Robledo-Arnuncio JJ, Collada C, Alia R, Gil L (2005) Genetic structure of mountain isolates of Pinus sylvestris L. in a Mediterranean refugial area. J Biogeogr 32:595–605CrossRefGoogle Scholar
  65. Rubiales MJ, Garcia-Amorena I, Alvarez SG, Manzaneque FG (2008) The late Holocene extinction of Pinus sylvestris in the western Cantabrian range (Spain). J Biogeogr 10:1840–1850CrossRefGoogle Scholar
  66. Savolainen O, Yazdani R (1991) Genetic comparison of neutral and artificial populations of Pinus sylvestris. In: Müller-Starck G, Ziehe M (eds) Genetic variation in European populations of forest trees. Sauerländer’s Verlag, Frankfurt am Main, pp 228–234Google Scholar
  67. Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in forest trees. Ann Rev Ecol Evol Syst 38:595–619CrossRefGoogle Scholar
  68. Scalfi M, Piotti A, Rossi M, Piovani P (2009) Genetic variability of Italian southern Scots pine (Pinus sylvestris L.) populations: the rear edge of the range. Eur J For Res 128:377–386CrossRefGoogle Scholar
  69. Sinclair WT, Morman JD, Ennos R (1999) The postglacial history of Scots pine (Pinus sylvestris L.) in Western Europe: evidence from mitochondrial DNA variation. Mol Ecol 8:83–88CrossRefGoogle Scholar
  70. Soranzo N, Provan J, Powell W (1998) Characterization of microsatellite loci in Pinus sylvestris L. Mol Ecol 7:1260–1261PubMedGoogle Scholar
  71. Soranzo N, Alia R, Provan J, Powell W (2000) Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol Ecol 9:1205–1211PubMedCrossRefGoogle Scholar
  72. Toro MA, Caballero A (2005) Characterization and conservation of genetic diversity in subdivided populations. Phil T Roy Soc B 1459:1367–1378CrossRefGoogle Scholar
  73. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 40:535–538CrossRefGoogle Scholar
  74. Vescovi E, Ravazzi C, Arpenti E, Finsinger W, Pini R, Valsecchi V, Wick L, Ammann B, Tinner W (2007) Interactions between climate and vegetation during the Late glacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quat Sci Rev 26:1650–1669CrossRefGoogle Scholar
  75. Wang XR, Szmidt AE, Lindgren D (1991) Allozyme differentiation among populations of Pinus sylvestris L. from Sweden and China. Hereditas 114:219–226CrossRefGoogle Scholar
  76. Weir BS (1996) Genetic analysis data II. Sinauer Associates, SunderlandGoogle Scholar
  77. Williams CG (2010) Long-distance pine pollen still germinates after meso-scale dispersal. Am J Bot 97:1–10CrossRefGoogle Scholar
  78. Williams DA, Wang YQ, Borchetta M, Gaines MS (2007) Genetic diversity and spatial structure of a keystone species in fragmented pine rockland habitat. Biol Conserv 138:256–268CrossRefGoogle Scholar
  79. Zhou Y, Bui T, Auckland LD, Williams CG (2002) Undermethylated DNA as a source of microsatellites from a conifer genome. Genome 45:91–99PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • P. Belletti
    • 1
    Email author
  • D. Ferrazzini
    • 1
  • A. Piotti
    • 2
  • I. Monteleone
    • 1
  • F. Ducci
    • 3
  1. 1.DIVAPRA Plant Genetics and BreedingUniversity of TurinGrugliascoItaly
  2. 2.Department of Environmental SciencesUniversity of ParmaParmaItaly
  3. 3.Agricultural Research CouncilInstitute of ForestryArezzoItaly

Personalised recommendations