European Journal of Forest Research

, Volume 131, Issue 4, pp 1091–1101 | Cite as

Two provenances of Quercus ilex ssp. ballota (Desf) Samp. nursery seedlings have different response to frost tolerance and autumn fertilization

  • Enrique Andivia
  • Manuel FernándezEmail author
  • Javier Vázquez-Piqué
  • Reyes Alejano
Original Paper


Despite evidences that Holm oak has a high plasticity and great adaptability, there is limited or contradictory knowledge of the morphological and physiological variability of this species. Holm oak has been widely used for reforestation projects in Mediterranean areas, but has frequently shown poor field performance. We hypothesized that Holm oak has inter-population differences in physiological responses to abiotic stressors that could affect reforestation success. The influence of nursery culture on the characteristics of Holm oaks from different provenances has not been explored in depth. Thus, we studied the effect of nursery autumn fertilization on morphological traits, frost tolerance, root growth potential, and nutritional status of two Spanish provenances of Holm oak, La Alcarria (a region with inland Mediterranean climate) and Sierra Morena Occidental (a region with a warm coastal Mediterranean climate). There were significant differences between the provenances in frost tolerance, biomass allocation, and leaf nutrient content, suggesting a role of genetic factors. The leaves of seedlings from La Alcarria had less visual damage at −12°C than seedlings from the warmer provenance (45% vs. 92%). Seedlings from La Alcarria, compared to those from Sierra Morena, had higher leaf P concentration (0.17% vs. 0.15%), greater stem diameter (3.1 mm vs. 2.7 mm), lower shoot-to-root dry mass ratio (0.46 vs. 0.53), and lower slenderness (4.03 vs. 5.31). For both provenances, N autumn fertilization improved growth, root growth potential, cold hardiness, and nutritional status of seedlings. We suggest that forest reforestation programs should consider to a greater extent Holm oak provenances and their tolerances to different abiotic stressors.


Holm oak Provenance Reforestation Adaptation Cold hardiness Autumn fertilization 



This work has been financed by MEC of Spain (Ref. AGL2006-12609-C02-01/FOR). In addition, the work was partially supported by University of Huelva and Andalucía Research Programs to promote research groups activity. First author is benefiting from a doctoral grant from the Ministry of Education of Spain. We gratefully acknowledge the support of the laboratory of research and Agrifood control (LICAH) of the University of Huelva for carrying out chemical analysis.


  1. Alía R, Alba N, Agúndez D, Iglesias S (2005) Manual para la comercialización y producción de semillas y plantas forestales: materiales de base y reproducción. Serie Forestal. Dirección General para la Biodiversidad, Madrid, Spain, p 384Google Scholar
  2. Andersson C, Frost I (1996) Growth of Quercus robur seedlings after experimental grazing and cotyledon removal. Acta Botanica Neerlandia 45:85–94Google Scholar
  3. Andivia E, Fernández M, Vázquez-Piqué J (2011a) Autumn fertilization of Quercus ilex ssp ballota (Desf.) Samp. nursery seedlings: effects on morpho-physiology and field performance. Ann For Sci 68:543–553CrossRefGoogle Scholar
  4. Andivia E, Márquez-García B, Vázquez-Piqué J, Córdoba F, Fernández M (2011b) Autumn fertilization with nitrogen improves nutritional status, cold hardiness and the oxidative stress response of holm oak (Quercus ilex ssp. ballota [Desf.] Samp) nursery seedlings. Trees Struct Funct. doi: 10.1007/s00468-011-0593-3
  5. Aranda I, Castro L, Alía R, Pardos JA, Gil L (2005) Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). Tree Physiol 25:1085–1090PubMedCrossRefGoogle Scholar
  6. Barbero M, Loisel R, Quézel P (1992) Biogeography ecology and history of Mediterranean Quercus ilex ecosystems. Vegetation 99–100:19–34CrossRefGoogle Scholar
  7. Birchler T, Rose RW, Royo A, Pardos M (1998) La planta ideal: revisión del concepto, parámetros definitorios e implementación práctica. Inv Agrar-Sist Rec F 7:109–121Google Scholar
  8. Boivin JR, Miller BD, Timmer VR (2002) Late-season fertilization of Picea mariana seedlings under greenhouse culture: biomass and nutrient dynamics. Ann For Sci 59:255–264CrossRefGoogle Scholar
  9. Bongarten BC, Teskey RO (1986) Water relations of loblolly pine seedlings from diverse geographic origins. Tree Physiol 1:265–276PubMedGoogle Scholar
  10. Broncano MJ, Riba M, Retana J (1998) Seed germination and seedling performance of two Mediterranean tree species, holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.): a multifactor experimental approach. Plant Ecol 138:17–26CrossRefGoogle Scholar
  11. Christensen JH, Hewitson B, Busuioc A et al (2007) Contribution of working group I to fourth assessment report of the intergovernmental panel of climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller MTHL (eds) Climate change 2007: the physical science. Cambridge University Press, CambridgeGoogle Scholar
  12. Cuesta B, Villar-Salvador P, Puértolas J, Jacobs DF, Rey Benayas JM (2010) Why do large, nitrogen rich seedlings better resist stressful transplating conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. For Ecol Manage 260:71–78Google Scholar
  13. del Campo AD, Navarro-Cerillo RM, Ceacero CJ (2010) Seedling quality and field performance of comercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: an approach for establishing a quality standard. New For 39:19–37CrossRefGoogle Scholar
  14. Elstner EF (1982) Oxygen activation and oxygen toxicity. Ann Rev Plant Physiol 33:73–96CrossRefGoogle Scholar
  15. Fernández M, Marcos C, Tapias R, Ruiz F, López G (2007) Nursery fertilisation affects the frost-tolerance and plant quality of Eucalyptus globulus Labill cuttings. Ann For Sci 68:865–873CrossRefGoogle Scholar
  16. Fernández M, Alejano R, Domínguez L, Tapias R (2008) Temperature controls cold hardening more effectively than photoperiod in four Mediterranean broadleaf evergreen species. Tree For Sci Biotech 2:43–49Google Scholar
  17. García-Cebrián F, Esteso-Martínez J, Gil-Pelegrín E (2003) Influence of cotyledon removal on early seedling growth in Quercus robur L. Ann For Sci 60:69–73CrossRefGoogle Scholar
  18. Gimeno TE, Pías B, Lemos-Filhos JP, Valladares F (2009) Plasticity and stress tolerance override local adaptation in the response of Mediterranean Holm oak seedlings to drought and cold. Tree Physiol 29:87–98PubMedCrossRefGoogle Scholar
  19. Gratani L (1995) Structural and ecophysiological plasticity of some evergreen species of the Mediterranean maquis in response to climate. Photosynthetica 31:335–343Google Scholar
  20. Gratani L, Meneghini M, Pesoli P, Crescente MF (2003) Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy. Trees 17:515–521Google Scholar
  21. Gu L, Hanson PJ, Post WM, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 Eastern US spring freeze: increased cold damage in a warming world? Bioscience 58:253–262CrossRefGoogle Scholar
  22. Heino P, Palva ET (2003) Signal transduction in plant cold acclimation. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Top Curr Gen, vol 4. Springer, Berlin, pp 151–185CrossRefGoogle Scholar
  23. Hsiao TC, Läuchli A (1986) Role of potassium in plant–water relations. In: Tinker B, Laüchli A (eds) Advances in plant nutrition, vol II. Praeger Scientific, New York, pp 281–312Google Scholar
  24. Jiménez-Sancho P, Díaz-Fernández PM, Iglesias-Sauce S, de Tuero M, Gil L (1996) Regiones de procedencia de Quercus ilex L en España. MAPA, ICONAGoogle Scholar
  25. Jorrín Novo JV, Navarro-Cerrillo JM, Jorge I, Gómez E, Ariza Mateos D (2004) Aplicación de la proteómica a la caracterización de procedencias de Quercus ilex subsp. ballota (Desf.) Samp. Cuad Soc Esp Cien For 17:57–61Google Scholar
  26. Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst 134:279–295CrossRefGoogle Scholar
  27. Laureano RG, Lazo YO, Linares JC, Luque A, Martínez F, Seco JI, Merino J (2008) The cost of stress resistance: construction and maintenance costs of leaves and roots in two populations of Quercus ilex. Tree Physiol 28:1721–1728PubMedCrossRefGoogle Scholar
  28. Leiva MJ, Fernández-Alés R (1998) Variability in seedling water status during drought within a Quercus ilex subsp ballota population, and its relation to seedling morphology. For Ecol Manage 111:147–156CrossRefGoogle Scholar
  29. Levitt J (1980) Responses of plants to environmental stresses. Academic Press, New YorkGoogle Scholar
  30. Livonen S, Saranpää P, Sutinen ML, Vapaavuori E (2004) Effects of temperature and nutrient availability on plasma membrane lipid composition in Scots pine roots during growth initiation. Tree Physiol 24:437–446CrossRefGoogle Scholar
  31. MAPA (2006) Forestación de tierras agrícolas. Ministerio de Agricultura y Pesca, Madrid, 373 pGoogle Scholar
  32. Marschner H (1995) Mineral nutrition of higher plants. Academic Press Limited, LondonGoogle Scholar
  33. Miao S (1995) Acorn mass and seedling growth in Quercus rubra in response to elevated CO2. J Veg Sci 6:670–700CrossRefGoogle Scholar
  34. Michaud H, Toumi L, Lumaret R, Li TX, Romane F, Di Giusto F (1995) Effect of geographical discontinuity on genetic variation in Quercus ilex L. (holm oak). Evidence from enzyme polymorphism. Heredity 74:590–606CrossRefGoogle Scholar
  35. Mollá S, Villar-Salvador P, García-Fayos P, Peñuelas-Rubira JL (2006) Physiological and transplanting performance of Quercus ilex L holm oak) seedlings grown in nurseries with different winter conditions. For Ecol Manage 237:218–226CrossRefGoogle Scholar
  36. Morin X, Ameglio T, Ahas R, Kurz-Besson C, Lanta V, Lebourgeois F, Miglietta F, Chuine I (2007) Variation in cold hardiness and carbohydrates concentration from dormancy induction to bud burst among provenances of three European oak species. Tree Physiol 27:817–825PubMedCrossRefGoogle Scholar
  37. Navarro-Cerrillo RM, Pemán J, del Campo AD, Moreno J, Lara MA, Díaz JL, Pousa F, Piñón FM (2009) Manual de especies para la forestación de tierras agrarias en Andalucía. Junta de Andalucía, Consejería de Agricultura y Pesca, SevillaGoogle Scholar
  38. Novillo F, Alonso JM, Ecker JE, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci 101:3985–3990PubMedCrossRefGoogle Scholar
  39. Oleksyn J, Modrzynski J, Tjoelker MG, Zytkowiak R, Reich PB, Karolewski P (1998) Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct Ecol 12:573–590CrossRefGoogle Scholar
  40. Oliet JA, Tejada M, Salifu KF, Collazos A, Jacobs DF (2009) Performance and nutrient dynamics of holm oak (Quercus ilex L.) seedlings in relation to nursery nutrient loading and post-transplant fertility. Eur J For Res 128:253–263CrossRefGoogle Scholar
  41. Oliet JA, Salazar JM, Villar R, Robredo E, Valladares F (2011) Fall fertilization of Holm oak affects N and P dynamics, root growth potential, and post-transplanting phenology and growth. Ann For Sci 68:647–656CrossRefGoogle Scholar
  42. Palacios G, Navarro-Cerrillo RM, del Campo A, Toral M (2009) Site preparation stock quality and planning date effect on early establishment of Holm oak (Quercus ilex L.) seedlings. Ecol Eng 35:38–46CrossRefGoogle Scholar
  43. Palmroth S, Berninger F, Nikinmaa E, Lloyd J, Pulkkinen P, Hari P (1999) Structural adaptation rather than water conservation was observed in Scots pine over a range of wet to dry climates. Oecologia 121:302–309CrossRefGoogle Scholar
  44. Pausas JG, Blade C, Valdecantos A, Seva JP, Fuentes D, Alloza JA, Vilagrosa A, Bautista S, Cortina J, Vallejo R (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice—a review. Plant Ecol 171:209–220CrossRefGoogle Scholar
  45. Pesoli P, Gratani L, Larcher W (2003) Response of Quercus ilex from different provenances to experimentally imposed water stress. Biol Plant 46:577–581CrossRefGoogle Scholar
  46. Peuke AD, Schrami C, Hartung W, Rennenberg H (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol 154:373–387CrossRefGoogle Scholar
  47. Puértolas J, Gil L, Pardos JA (2005) Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis Mill.) seedlings assessed by chlorophyll fluorescence. Forestry 78:502–511CrossRefGoogle Scholar
  48. Puértolas J, Disante K, Fuentes D, Valdecantos A, Monerris J, Cortina J, Benito LF, Peñuelas JL (2009) Ritmos de acumulación de biomasa en Quercus ilex durante el primer año de cultivo en contenedor: efectos maternos y ambientales. In: Sociedad Española de Ciencias Forestales, Junta de Castilla y León (eds) Proceedings V Congreso Forestal Español, Ávila, Spain, Ref.: 5CFE01-278, p 10. ISSN: 978-84-936854-6-1Google Scholar
  49. Puttonen P (1997) Looking for the “silver-bullet”: can one test do it? New For 13:9–27CrossRefGoogle Scholar
  50. Querejeta J, Roldán A, Albadalejo J, Castillo V (2001) Soil water availability improved by site preparation in a Pinus halepensis afforestation under semiarid climate. For Ecol Manag 149:115–128CrossRefGoogle Scholar
  51. Ramírez-Valiente JA, Valladares F, Gil L, Aranda I (2009) Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). For Ecol Manag 257:1676–1683CrossRefGoogle Scholar
  52. Ritchie GA (1985) Root growth potential: principles, procedures and predictive ability. In: Duryea ML (ed) Proceedings evaluating seedling quality: principles, procedures, and predictive abilities of major tests. Forest Research Laboratory, Oregon State University, Corvallis, pp 93–105Google Scholar
  53. Rodà F, Retana J, Gracia C, Bellot J (1999) Ecology of Mediterranean evergreen oak forests. Springer, BerlinCrossRefGoogle Scholar
  54. Rose R, Rose CL, Omi SK, Forry KR, Durral DM, Bigg WL (1991) Starch determination by perchloric acid versus enzymes: evaluating the accuracy and precision of six colorimetric methods. J Agric Food Chem 39:2–11CrossRefGoogle Scholar
  55. Sánchez-Vilas J, Retuerto R (2007) Quercus ilex shows significant among-population variability in functional and growth traits but maintains invariant scaling relations in biomass allocation. Int J Plant Sci 168:973–983CrossRefGoogle Scholar
  56. Sanz-Pérez V, Castro-Díez P, Valladares F (2007) Growth versus storage: response of Mediterranean oak seedlings to changes in nutrient and water availabilities. Ann For Sci 64:201–210CrossRefGoogle Scholar
  57. Simpson DG, Ritchie GA (1996) Does RGP predict field performance? A debate. New For 13:249–273Google Scholar
  58. Spiro RG (1966) Analysis of sugars found in glycoproteins. In: Neufeld EF, Ginsburg V (eds) Methods in ezymology. Complex carbohydrates, vol VIII. Academic Press, New York, pp 3–26CrossRefGoogle Scholar
  59. Suping Z, Sauvé RJ, Mmbaga MT (2005) Adaptation of Pachysandra terminalis Sieb & Zucc. to freezing temperatures by the accumulation of mRNA and cold-induced proteins. Hort Sci 40:346–347Google Scholar
  60. Terradas J, Savé R (1992) The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L. In: Romane F, Terradas J (eds) Quercus ilex L. ecosystems: function dynamics and management. Kluwer, Dordrecht, pp 137–145Google Scholar
  61. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599PubMedCrossRefGoogle Scholar
  62. Trubat R, Cortina J, Vilagrosa A (2011) Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecol Eng 37:1164–1173CrossRefGoogle Scholar
  63. Valladares F, Martínez-Ferri E, Balaguer L, Pérez-Corona E, Manrique E (2000) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-used strategy? New Phytol 148:79–91CrossRefGoogle Scholar
  64. Villar-Salvador P, Planelles R, Enriquez E, Peñuelas-Rubira JL (2004a) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Manage 196:257–266CrossRefGoogle Scholar
  65. Villar-Salvador P, Planelles R, Oliet J, Peñuelas-Rubira JL, Jacobss DF, González M (2004b) Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery. Tree Physiol 24:1147–1155PubMedCrossRefGoogle Scholar
  66. Villar-Salvador P, Heredia N, Millard P (2010) Remobilization of acorn nitrogen for seedling growth in holm oak (Quercus ilex), cultivated with contrasting nutrient availability. Tree Physiol 30:257–263PubMedCrossRefGoogle Scholar
  67. Wolfinger RD (1996) Heterogeneous variance-covariance structures for repeated measures. J Agric Biol Environ Stat 1:205–230CrossRefGoogle Scholar
  68. Zwiazek J, Renault S, Croser C, Hansen J, Beck E (2001) Biochemical and biophysical changes in relation to cold hardiness. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer, Dordrecht, pp 165–186Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Enrique Andivia
    • 1
  • Manuel Fernández
    • 1
    Email author
  • Javier Vázquez-Piqué
    • 1
  • Reyes Alejano
    • 1
  1. 1.Departamento de Ciencias AgroforestalesUniversidad de Huelva, Escuela Técnica Superior de IngenieríaHuelvaSpain

Personalised recommendations