European Journal of Forest Research

, Volume 131, Issue 4, pp 919–931 | Cite as

Pinus halepensis Mill. crown development and fruiting declined with repeated drought in Mediterranean France

  • François Girard
  • Michel Vennetier
  • Frédéric Guibal
  • Christophe Corona
  • Samira Ouarmim
  • Asier Herrero
Original Paper


The objectives of this study were to describe and quantify Aleppo pine aerial primary growth processes and to assess their relationships with climate. Primary growth (branch length growth, branching rate, polycyclism, needle number and size, fruiting), i.e. crown development and reproduction, was reconstructed for the last 16 years in Mediterranean France. From 1998 to 2007, climate has been far hotter and drier than normal in South-eastern France. All variables related to crown development and fruiting, as well as radial growth, significantly declined after 2003 heat wave and during repeated droughts from 2004 to 2007. A partial recovery of most parameters occurred from 2008 to 2010 on vigorous branches while frail branches showed less improvement. The limited crown development during unfavourable years may significantly hold back tree potential photosynthetic biomass for several following years and contribute to a slower than expected recovery of tree growth or to delayed die-back.


Pinus halepensis Primary growth Shoot length Branching rate Needle number Needle length Polycyclism Fruiting Ring width Tree architecture Climate change Mediterranean forest Drought 



We would like to thank Christian Ripert, Roland Estève, Willy Martin, Aminata N’Diaye Boucabar, Frederic Faure-Brac and Maël Grauer for their assistance in the field and laboratory work, as well as Régine Verlaque and Bruno Vila, curators from Marseille University herbarium, who contributed material to control needle length. This research was funded by the French National Research Agency (DROUGHT + project, No ANR-06-VULN-003-04), the French Ministry for Ecology, Energy and Sustainable Development (GICC–REFORME project, No MEED D4E CV05000007), the Conseil Général des Bouches-du-Rhône (CG13), ECCOREV Research Federation (FR3098), the “F-ORE-T” LTER network and Cemagref.


  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, Mcdowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684CrossRefGoogle Scholar
  2. Amato S, Vinzi VE (2003) Bootstrap-based (Q)over-cap(kh)(2) for the selection of components and variables in PLS regression. Chemom Intell Lab Syst 68(1–2):5–16CrossRefGoogle Scholar
  3. Ayari A, Moya D, Rejeb MN, Ben Mansoura A, Albouchi A, De Las Heras J, Fezzani T, Henchi B (2011) Geographical variation on cone and seed production of natural Pinus halepensis Mill. forests in Tunisia. J Arid Environ 75(5):403–410Google Scholar
  4. Barthelemy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99(3):375–407PubMedCrossRefGoogle Scholar
  5. Bigler C, Braker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9(3):330–343CrossRefGoogle Scholar
  6. Borchert R (1994) Induction of rehydration and bud break by irrigation or rain in deciduous trees of a tropical dry forest in Costa-Rica. Trees-Struct Funct 8(4):198–204CrossRefGoogle Scholar
  7. Borghetti M, Cinnirella S, Magnani F, Saracino A (1998) Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill. Trees-Struct Funct 12(4):187–195Google Scholar
  8. Borghetti M, Magnani F, Fabrizio A, Saracino A (2004) Facing drought in a Mediterranean post-fire community: tissue water relations in species with different life traits. Acta Oecol 25(1–2):67–72CrossRefGoogle Scholar
  9. Caraglio Y, Pimont F, Rigolot E (2007) Pinus halepensis architectural analysis for fuel modelling. Options Méditerr Série A 75:43–59Google Scholar
  10. Climent J, Prada MA, Calama R, Chambel MR, De Ron DS, Alia R (2008) To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). Am J Bot 95(7):833–842PubMedCrossRefGoogle Scholar
  11. Cook ER (1985) A time series analysis approach to tree ring standardization. The University of Arizona, TucsonGoogle Scholar
  12. Cramer RD, Bunce JD, Patterson DE, Frank IE (1988) Cross-validation, bootstrapping, and partial least-squares compared with multiple-regression in conventional qsar studies. Quant Struct-Act Relat 7(1):18–25CrossRefGoogle Scholar
  13. Cruiziat P, Cochard H, Ameglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59(7):723–752CrossRefGoogle Scholar
  14. Damesin C (2003) Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance. New Phytol 158(3):465–475CrossRefGoogle Scholar
  15. Debazac EF (1963) Morphologie et sexualité chez les pins. Revue Forestière Française 15:293–303CrossRefGoogle Scholar
  16. Dekort I, Loeffen V, Baas P (1991) Ring width, density and wood anatomy of douglas-fir with different crown vitality. IAWA Bull 12(4):453–465Google Scholar
  17. El Khorchani A, Gadbin-Henry C, Bouzid S, Khaldi A (2007) The impact of drought on the growth of three forest species in Tunisia (Pinus halepensis Mill., Pinus pinea L. et Pinus pinaster Sol.). Secheresse 18(2):113–121Google Scholar
  18. Falusi M, Calamassi R (1996) Geographic variation and bud dormancy in beech seedlings (Fagus sylvatica L). Ann Des Sci For 53(5):967–979CrossRefGoogle Scholar
  19. Gibelin AL, Deque M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyna 20(4):327–339Google Scholar
  20. Girard F, Vennetier M, Ouarmim S, Caraglio Y, Misson L (2011) Polycyclism, a fundamental tree growth process, decline with recent climate change. The example of Pinus halepensis Mill in Mediterranean France. Trees-Struct Funct 25(2):311–322Google Scholar
  21. Good P (1994) Permutation tests. Springer, New YorkGoogle Scholar
  22. Halle F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer-Verlag, New York, 441 ppGoogle Scholar
  23. Hesselbjerg-Christiansen J, Hewitson B (2007) Regional climate projection. In: climate change 2007: the physical science basis contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge (UK) and New York (USA) pp 847–940Google Scholar
  24. Holmes RL, Adams RK, Fritts HC (1986) Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Bassin, with procedures used in the chronology development work, including user manuals for computer program COFECHA and ARSTAN. Laboratory of Tree-Ring Research, University of Arizona, TucsonGoogle Scholar
  25. Holst J, Barnard R, Brandes E, Buchmann N, Gessler A, Jaeger L (2008) Impacts of summer water limitation on the carbon balance of a Scots pine forest in the southern upper Rhine plain. Agric For Meteorol 148(11):1815–1826CrossRefGoogle Scholar
  26. Jalkanen R, Aalto T, Kurkela T (1994) The use of needle-trace method (Ntm) in retrospectively detecting lophodermella needle-cast epidemic. Eur J For Pathol 24(6–7):376–385CrossRefGoogle Scholar
  27. Jalkanen R, Aalto T, Kurkela T (1998) Revealing past needle density in Pinus spp. Scand J For Res 13(3):292–296CrossRefGoogle Scholar
  28. Le Houerou HN (2005) The isoclimatic mediterranean biomes: bioclimatology, diversity and phytogeography, vol 1 and 2. Copymania Publication, MontpellierGoogle Scholar
  29. Masotti V, Barthelemy D, Mialet I, Sabatier S, Caraglio Y (1995) Study on the effect of the environment on the growth, branching and architecture of the atlas cedar, Cedrus atlantica (Endl) Manetti ex Carriere. Archit For Fruit Trees 74:175–189Google Scholar
  30. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997PubMedCrossRefGoogle Scholar
  31. Météofrance (2009) Données météorologiques des stations d’Aubagne, Gémenos, Cuges-les-pins (data from the National Meteorological Survey Network)Google Scholar
  32. Misson L, Limousin JM, Rodriguez R, Letts MG (2010) Leaf physiological responses to extreme droughts in Mediterranean Quercus ilex forest. Plant Cell Environ 33(11):1898–1910PubMedCrossRefGoogle Scholar
  33. Misson L, Degueldre D, Collin C, Rodriguez R, Rocheteau A, Ourcival JM, Rambal S (2011) Phenological responses to extreme droughts in a Mediterranean forest. Glob Change Biol 17(2):1036–1048CrossRefGoogle Scholar
  34. Nahal I (1962) Le Pin d’Alep (Pinus halepensis Mill.) Étude taxonomique, phytogéographique, écologique et sylvicole, Annales de l’École des Sciences de la Nature, des eaux et des Forêts Nancy FranceGoogle Scholar
  35. Ne’eman G, Goubitz S, Werger MJA, Shmida A (2011) Relationships between tree size, crown shape, gender segregation and sex allocation in Pinus halepensis, a Mediterranean pine tree. Ann Bot 108(1):197–206PubMedCrossRefGoogle Scholar
  36. Nemenyi PB (1963) Distribution-free multiple comparisons. Princeton University Press, PrincetonGoogle Scholar
  37. Nicault A, Rathgeber C, Tessier L, Thomas A (2001) Intra-annual variations of radial growth and ring structure. Ann For Sci 58(7):769–784CrossRefGoogle Scholar
  38. Ogaya R, Peñuelas J, Martínez-Vilalta J, Mangirón M (2003) Effect of drought on diameter increment of Quercus ilex, Phillyrea latifolia, and Arbutus unedo in a holm oak forest of NE Spain. For Ecol Manag 180(1–3):175–184CrossRefGoogle Scholar
  39. Orshan G (1989) Plant pheno-morphological studies in Mediterranean type ecosystems. Kluwer, DordrechtGoogle Scholar
  40. Pardos M, Climent J, Gil L, Pardos JA (2003) Shoot growth components and flowering phenology in grafted Pinus halepensis Mill. Trees-Struct Funct 17(5):442–450CrossRefGoogle Scholar
  41. R Development Core Team (2004) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (Austria)Google Scholar
  42. Rathgeber C, Nicault A, Guiot J, Keller T, Guibal F, Roche P (2000) Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Glob Planet Change 26(4):405–421CrossRefGoogle Scholar
  43. Rathgeber C, Blanc L, Ripert C, Vennetier M (2004) Modélisation de la croissance en hauteur du pin d’Alep (Pinus halepensis Mill.) en région Méditerranéenne française. Ecol Mediterr 30(2):205–218Google Scholar
  44. Rathgeber CBK, Misson L, Nicault A, Guiot J (2005) Bioclimatic model of tree radial growth: application to the French Mediterranean Aleppo pine forests. Trees-Struct Funct 19(2):162–176CrossRefGoogle Scholar
  45. Sabatier S, Baradat P, Barthelemy D (2003) Intra- and interspecific variations of polycyclism in young trees of Cedrus atlantica (Endl.) Manetti ex Carriere and Cedrus libani A Rich (Pinaceae). Ann For Sci 60(1):19–29CrossRefGoogle Scholar
  46. Sardans J, Peñuelas J (2007) Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest. Environ Pollut 147(3):567–583PubMedCrossRefGoogle Scholar
  47. Sarris D, Christodoulakis D, Korner C (2011) Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Change 106(2):203–223CrossRefGoogle Scholar
  48. Schweingruber FH (1996) Tree rings and environment: Dendroecology. Paul Haupt Publishers, Bern (Swizerland)Google Scholar
  49. Serre F (1976) Les rapports de la croissance et du climat chez le pin d’Alep (Pinus halepensis (Mill)) II L’allongement des pousses et des aiguilles, et le climat Discussion Générale. Oecologia Plantarum 11(3):201–224Google Scholar
  50. Thabeet A, Vennetier M, Gadbin-Henry C, Denelle N, Roux M, Caraglio Y, Vila B (2009) Response of Pinus sylvestris L. to recent climate change in the French Mediterranean region. Trees-Struct Funct 28(4):843–853CrossRefGoogle Scholar
  51. Thioulouse J, Chessel D, Doledec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7(1):75–83CrossRefGoogle Scholar
  52. Vennetier M, Herve JC (1999) Short and long term evolution of Pinus halepensis (Mill.) height growth in Provence (France) and its consequences for timber production. Causes Consequences of Accel Tree Growth Eur 27:253–265Google Scholar
  53. Vennetier M, Ripert C (2009) Forest flora turnover with climate change in the Mediterranean region: a case study in Southeastern France. For Ecol Manag 258:S56–S63CrossRefGoogle Scholar
  54. Vennetier M, Ripert C (2010) Climate change impact on vegetation: lessons from an exceptionally hot and dry decade in South-eastern France. In: Climate change and variability, Sciyo, Rijeka, Croatia, pp 225–241Google Scholar
  55. Vennetier M, Vila B, Liang EY, Guibal F, Thabeet A, Gadbin-Henry C (2007) Impact of climate change on pine forest productivity and on the shift of a bioclimatic limit in a Mediterranean area. Options Méditerr Série A 75:189–197Google Scholar
  56. Vennetier M, Ripert C, Maillé E, Blanc L, Torre F, Roche P, Tatoni T, Brun J–J (2008) A new bioclimatic model calibrated with flora for Mediterranean forested areas. Ann For Sci 65:711CrossRefGoogle Scholar
  57. Vennetier M, Ripert C, Brochiero F, Rathgeber C, Nassif Y, Chandioux O (2010) Evaluation de la croissance du pin d’Alep en région méditerranéenne française. Revue Forestière Française LXXII(5):503–524Google Scholar
  58. Vennetier M, Girard F, Didier C, Ouarmim S, Ripert C, Estève R, Martin W, N’diaye A, Misson L (2011) Adaptation phénologique du pin d’Alep au changement climatique, Forêt Méditerranéenne 32(2):151–167Google Scholar
  59. Vicente-Serrano SM, Lasanta T, Gracia C (2010) Aridification determines changes in forest growth in Pinus halepensis forests under semiarid Mediterranean climate conditions. Agric For Meteorol 150(4):614–628Google Scholar
  60. Vila B, Vennetier M, Ripert C, Chandioux O, Liang E, Guibal F, Torre F (2008) Has global change induced opposite trends in radial growth of Pinus sylvestris and Pinus halepensis at their bioclimatic limit? The example of the Sainte-Baume forest (south-east France). Ann For Sci 65:709CrossRefGoogle Scholar
  61. Wold S (1995) PLS for multivariate linear modelling. In: Chemometric methods in molecular design, Weinheim (Germany), pp 195–218Google Scholar
  62. Zaitchik BF, Macalady AK, Bonneau LR, Smith RB (2006) Europe’s 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int J Clim 26(6):743–769CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • François Girard
    • 1
  • Michel Vennetier
    • 1
    • 2
  • Frédéric Guibal
    • 3
  • Christophe Corona
    • 3
  • Samira Ouarmim
    • 1
  • Asier Herrero
    • 4
  1. 1.CEMAGREF, Ecosystèmes Méditerranéens et RisquesCedex 5, Aix en ProvenceFrance
  2. 2.ECCOREV FR 3098, Aix-Marseille UniversityAix-en-ProvenceFrance
  3. 3.IMEP, Faculté des Sciences de St JérômeMarseille, Cedex 20France
  4. 4.Departamento de EcologíaFacultad de Ciencias, Campus de Fuentenueva, Universidad de GranadaGranadaSpain

Personalised recommendations