European Journal of Forest Research

, Volume 131, Issue 3, pp 717–725 | Cite as

Late frost sensitivity of juvenile Fagus sylvatica L. differs between southern Germany and Bulgaria and depends on preceding air temperature

  • J. KreylingEmail author
  • D. Thiel
  • L. Nagy
  • A. Jentsch
  • G. Huber
  • M. Konnert
  • C. Beierkuhnlein
Original Paper


Fagus sylvatica, the dominant native forest tree species of Central Europe, is sensitive to late frost events. Advanced leaf flushing due to climate warming may lead to more frequent frost damage in the future. Here, we explore local adaptation to late frost events at both continental and regional scales and test how moderate climate warming (+1.5°C) affects late frost sensitivity. Short-term leaf injury and height growth after a late frost event were quantified in a common garden experiment with 2-year-old F. sylvatica seedlings. The fully crossed three-factorial design consisted of a late frost manipulation, a continuous warming manipulation and selected provenances (three provenances from western Bulgaria and three from southern Germany). Late frost led to leaf injury and reduced height growth (−7%). Provenances differed in their late frost sensitivity at the regional scale, and local adaptation was detected. At the larger scale, the Bulgarian provenances showed reduced height growth (−17%), while the German provenances did not exhibit growth reduction. The warming treatment prevented late frost damage, while height growth declined by 19% in the reference temperature treatment. This surprising finding was attributed to advanced leaf maturity in the warming treatment. The impact of late frost events on F. sylvatica in a warmer world will depend on timing. An event that damages leaves immediately after leaf flushing appears negligible a few days earlier or later, thereby complicating projections. Local adaptation to late frost is evident at a regional scale. Management strategies should aim at maximizing genetic diversity to adapt to climate change.


Frost sensitivity Genetic diversity European beech Ecotypes Global warming 



This work was funded by the “Bavarian Climate Programme 2020” in the joint research center “FORKAST”. We thank Dr. Krasimira Nikolova Petkova (University of Forestry/Sofia) and the Bulgarian Forestry Agency for providing seed material for the Bulgarian provenances. We further thank Elke König, Stefan König, Christine Pilsl, Christian Schemm and numerous student workers and interns for their outstanding help during the field work.


  1. Awaya Y, Tanaka K, Kodani E et al (2009) Responses of a beech (Fagus crenata Blume) stand to late spring frost damage in Morioka, Japan. Forest Ecol Manag 257:2359–2369CrossRefGoogle Scholar
  2. Bolte A (2006) Zur Zukunft der Buche in Mitteleuropa. AFZ Der Wald 20:1077–1078Google Scholar
  3. Bolte A, Ibisch PL (2007) Neun Thesen zu Klimawandel, Waldbau und Naturschutz. AFZ Der Wald 11:572–576Google Scholar
  4. Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of European beech—a review. Forestry 80:413–429CrossRefGoogle Scholar
  5. Burger H (1948) Einfluss der Herkunft des Samens auf die Eigenschaften forstlicher Holzgewächse. VI Mitteilungen: Die Buche. Mitteilungen Schweiz Anst Forstl Versuchsw 25:287–326Google Scholar
  6. Comps B, Thiebaut B, Paule L et al (1990) Allozymic variability in beechwoods (Fagus sylvatica L) over Central-Europe—spatial differentiation among and within populations. Heredity 65:407–417CrossRefGoogle Scholar
  7. Cremer E, Petkova G, Huber G, Konnert M (2009) Transfer of German beech nuts to Bulgaria and vice versa. In: Zhelev P (ed) Abstracts of the international scientific conference “Balkans—hot spots of ancient and present genetic diversity”. Sofia, BulgariaGoogle Scholar
  8. Czajkowski T, Bolte A (2006a) Unterschiedliche Reaktion deutscher und polnischer Herkünfte der Buche (Fagus sylvatica L.) auf Trockenheit. Allg For Jgdztg 177:30–40Google Scholar
  9. Czajkowski T, Bolte A (2006b) Frosttoleranz deutscher und polnischer Herkünfte der Buche (Fagus sylvatica L.) und ihre Beeinflussung durch Trockenheit. Archiv Forstwesen Landschaftsökologie 40:119–126Google Scholar
  10. Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. Eur J For Res 125:249–259CrossRefGoogle Scholar
  11. EUFORGEN (2009) Distribution map of Beech (Fagus sylvatica).
  12. Eysteinsson T, Karlman L, Fries A et al (2009) Variation in spring and autumn frost tolerance among provenances of Russian larches (Larix Mill.). Scand J For Res 24:100–110CrossRefGoogle Scholar
  13. Faraway JJ (2006) Extending the linear model with R—generalized linear, mixed effects and nonparametric regression models. Chapman and Hall/CRC, Baco RatonGoogle Scholar
  14. Gu L, Hanson PJ, Post WM et al (2008) The 2007 Eastern US spring freeze: increased cold damage in a warming world? Bioscience 58:253–262CrossRefGoogle Scholar
  15. Hannerz M, Aitken SN, King JN et al (1999) Effects of genetic selection for growth on frost hardiness in western hemlock. Can J For Res 29:509–516CrossRefGoogle Scholar
  16. Herbinger K, Then C, Low M et al (2005) Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure. Environ Pollut 137:476–482PubMedCrossRefGoogle Scholar
  17. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  18. Hoegh-Guldberg O, Hughes L, McIntyre S et al (2008) Assisted colonization and rapid climate change. Science 321:345–346PubMedCrossRefGoogle Scholar
  19. Hosius B, Leinemann L, Konnert M et al (2006) Genetic aspects of forestry in the central Europe. Eur J For Res 125:407–417CrossRefGoogle Scholar
  20. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363CrossRefGoogle Scholar
  21. Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett 3:457–463CrossRefGoogle Scholar
  22. Ivankovic M, Marjanovic H, Franjic J et al (2007) Variability of Silver fir (Abies alba Mill.) provenances in the number of lateral buds on terminal sprout and damage by the late frost. Period Biol 109:55–59Google Scholar
  23. Jump AS, Hunt JM, Martinez-Izquierdo JA et al (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Molec Ecol 15:3469–3480CrossRefGoogle Scholar
  24. Kölling C (2007) Klimahüllen für 27 Waldbäume. AFZ Der Wald 23:1242–1245Google Scholar
  25. Konnert M (1995) Investigations on the genetic variation of beech (Fagus sylvatica L) in Bavaria. Silva Genet 44:346–351Google Scholar
  26. Kosmala A, Bocian A, Rapacz M et al (2009) Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. J Exp Bot 60:3595–3609PubMedCrossRefGoogle Scholar
  27. Krahl-Urban J (1958) Vorläufige Ergebnisse der Buchenprovenienzversuche. Allg For Jgdztg 129:242–251Google Scholar
  28. Kramer K (1994) A modeling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in the Netherlands and Germany. Plant Cell Environ 17:367–377CrossRefGoogle Scholar
  29. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75PubMedCrossRefGoogle Scholar
  30. Kramer K, Degen B, Buschbom J et al (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change-Range, abundance, genetic diversity and adaptive response. For Ecol Manag 259:2213–2222CrossRefGoogle Scholar
  31. Kreyling J (2010) Winter climate change: a critical factor for temperate vegetation performance. Ecology 91:1939–1948PubMedCrossRefGoogle Scholar
  32. Kreyling J, Bittner T, Jaeschke A et al. (2011) Assisted colonization—a question of focal units and recipient localities. Restor Ecol. doi: 10.1111/j.1526-100X.2011.00777.x
  33. Leuschner C, Meier IC, Hertel D (2006) On the niche breadth of Fagus sylvatica. Ann For Sci 63:355–368CrossRefGoogle Scholar
  34. Mace GM, Purvis A (2008) Evolutionary biology and practical conservation: bridging a widening gap. Molec Ecol 17:9–19CrossRefGoogle Scholar
  35. Magri D, Vendramin GG, Comps B et al (2006) A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221PubMedCrossRefGoogle Scholar
  36. Martin M, Gavazov K, Koerner C et al (2010) Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2. Glob Change Biol 16:1057–1070CrossRefGoogle Scholar
  37. Meier U (ed) (2001) Growth stages of mono-and dicotyledonous plants. BBCH Monograph, URL:
  38. Müller-Starck G, Baradat P, Bergman F (1992) Genetic variation within European tree species. New For 6:23–47CrossRefGoogle Scholar
  39. Nielsen CN, Jorgensen FV (2003) Phenology and diameter increment in seedlings of European beech (Fagus sylvatica L.) as affected by different soil water contents: variation between and within provenances. For Ecol Manag 174:233–249CrossRefGoogle Scholar
  40. Ningre F, Colin F (2007) Frost damage on the terminal shoot as a risk factor of fork incidence on common beech (Fagus sylvatica L.). Ann For Sci 64:79–86CrossRefGoogle Scholar
  41. Norby RJ, Luo YQ (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293CrossRefGoogle Scholar
  42. Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Glob Change Biol 9:1792–1801CrossRefGoogle Scholar
  43. Nunn AJ, Kozovits AR, Reiter IM et al (2005) Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506PubMedCrossRefGoogle Scholar
  44. Paludan-Müller G, Saxe H, Leverenz JW (1999) Responses to ozone in 12 provenances of European beech (Fagus sylvatica): genotypic variation and chamber effects on photosynthesis and dry-matter partitioning. New Phytol 144:261–273CrossRefGoogle Scholar
  45. Petit RJ, Aguinagalde I, de Beaulieu JL et al (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565PubMedCrossRefGoogle Scholar
  46. Peuke AD, Gessler A, Rennenberg H (2006) The effect of drought on C and N stable isotopes in different fractions of leaves, stems and roots of sensitive and tolerant beech ecotypes. Plant Cell Environ 29:823–835PubMedCrossRefGoogle Scholar
  47. Pinheiro JC, Bates DM (2004) Mixed-effects models in S and S-PLUS. Springer, New YorkGoogle Scholar
  48. R Development Core Team (2010) R: A language and environment for statistical computing. R version 2.11.1. R foundation for statistical computing. ISBN 3-900051-07-0, URL, Vienna, Austria
  49. Rigby JR, Porporato A (2008) Spring frost risk in a changing climate. Geophys Res Lett 35:L12703CrossRefGoogle Scholar
  50. Schaberg PG, DeHayes DH, Hawley GJ et al (2008) Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. For Ecol Manag 256:855–862CrossRefGoogle Scholar
  51. Shaw MR, Zavaleta ES, Chiariello NR et al (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990PubMedCrossRefGoogle Scholar
  52. Tognetti R, Johnson JD, Michelozzi M (1995) The response of European beech (Fagus sylvatica L.) seedlings from 2 Italian populations to drought and recovery. Trees Struct Funct 9:348–354Google Scholar
  53. Visnjic VC, Dohrenbusch A (2004) Frost resistance and phenology of European beech provenances (Fagus sylvatica L.). Allg For Jgdztg 175:101–108Google Scholar
  54. Vitasse Y, Bresson CC, Kremer A et al (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Funct Ecol 24:1211–1218CrossRefGoogle Scholar
  55. von Wuehlisch G, Krusche D, Muhs HJ (1995) Variation in temperature sum requirement for flushing of beech provenances. Silva Genet 44:343–346Google Scholar
  56. Vornam B, Decarli N, Gailing O (2004) Spatial distribution of genetic variation in a natural beech stand (Fagus sylvatica L.) based on microsatellite markers. Conserv Genet 5:561–570CrossRefGoogle Scholar
  57. Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  58. Willis KJ, Bailey RM, Bhagwat SA et al (2010) Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol Evol 25:583–591PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. Kreyling
    • 1
    Email author
  • D. Thiel
    • 1
  • L. Nagy
    • 1
  • A. Jentsch
    • 1
  • G. Huber
    • 2
  • M. Konnert
    • 2
  • C. Beierkuhnlein
    • 1
  1. 1.University of BayreuthBayreuthGermany
  2. 2.Bavarian Institute for Forest Seeding and Planting (ASP)TeisendorfGermany

Personalised recommendations