European Journal of Forest Research

, Volume 131, Issue 3, pp 655–667 | Cite as

Impacts of initial stand density and thinning regimes on energy wood production and management-related CO2 emissions in boreal ecosystems

  • Ashraful Alam
  • Antti Kilpeläinen
  • Seppo Kellomäki


An ecosystem model (Sima) was utilised to investigate the impact of forest management (by changing both the initial stand density and basal area thinning thresholds from current recommendations) on energy wood production (at energy wood thinning and final felling) and management-related carbon dioxide (CO2) emissions for the energy wood production in Finnish boreal conditions (62°39′ N, 29°37′ E). The simultaneous effects of energy wood, timber and C stocks in the forest ecosystem (live and dead biomass) were also assessed. The analyses were carried out at stand level during a rotation period of 80 years for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) growing in different fertility sites. Generally, the results showed that decreased basal area thinning thresholds, compared with current thinning, reduced energy wood (logging residues) and timber production, as well as carbon stocks in the forest ecosystem. Conversely, increased thinning thresholds increased energy wood production (ca. 1–27%) at both energy wood thinning and final felling and reduced CO2 emissions (ca. 2–6%) related to the production chain (e.g. management operations), depending on the thinning threshold levels, initial stand density, species and site. Increased thinning thresholds also enhanced timber production and carbon stocks in the forest ecosystem. Additionally, increased initial stand density enhanced energy wood production for energy wood thinning for both species, but this reduced energy wood production at final felling for Scots pine and Norway spruce. This study concluded that increases in both initial stand density and thinning thresholds, compared with the current level, could be useful in energy wood, timber and carbon stocks enhancement, as well as reducing management-related CO2 emissions for energy wood production. Only 2.4–3.3% of input of the produced energy (energy wood) was required during the whole production chain, depending on the management regime, species and sites. However, a comprehensive substitution analysis of wood-based energy, in respect to environmental benefits, would also require the inclusion of CO2 emissions related to ecosystem processes (e.g. decomposition).


Ecosystem model Emission calculation Energy wood production Management Boreal ecosystem 



The work was funded from Nordic Energy Research (NER) (2007–2010) through the project ‘The Climate and Energy System; Risks, Potential and Adaptation—Renewable Energy: Bio-fuels working group’ coordinated by Prof. Seppo Kellomäki, School of Forest Sciences, University of Eastern Finland. The authors thank Mr. Harri Strandman for technical help and Dr. David Gritten for linguistic revision.


  1. Ahtikoski A, Heikkilä J, Aleniusa V, Siren M (2008) Economic viability of utilizing biomass energy from young stands—the case of Finland. Biomass Bioenergy 32:988–996CrossRefGoogle Scholar
  2. Äijälä O, Kuusinen M, Koistinen A (2010) Hyvän metsänhoidon suositukset energiapuun korjuuseen ja kasvatukseen (Forest management recommendation for energy wood production and harvesting). Metsätalouden kehittämiskeskus Tapion julkaiseja, 31 pp (in Finnish)Google Scholar
  3. Alam A, Kilpeläinen A, Kellomäki S (2008) Impact of thinning on growth, timber production and carbon stocks in Finland under changing climate. Scand J For Res 23:501–512CrossRefGoogle Scholar
  4. Alam A, Kilpeläinen A, Kellomäki S (2010) Potential timber and energy wood production and carbon stocks in Finland under varying thinning regimes and climate scenarios. Bioenergy Res 3:362–372CrossRefGoogle Scholar
  5. Berg S, Karjalainen T (2003) Comparison of greenhouse gas emissions from forest operations in Finland and Sweden. Forestry 76:3271–3284CrossRefGoogle Scholar
  6. Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, Kellomäki S (2006) Carbon stocks and timber yield in two boreal forest ecosystems under current and changing climatic conditions subjected to varying management regimes. Environ Sci Policy 9:237–252CrossRefGoogle Scholar
  7. Bugmann H, Fischlin A, Kienast F (1996) Model convergence and state variable update in forest gap models. Ecol Modell 89:197–208CrossRefGoogle Scholar
  8. Cajander AK (1949) Metsätyypit ja niiden merkitys (Forest types and their importance). Acta Forest Fenn 56:5–69 (in Finnish)Google Scholar
  9. Eriksson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J (2007) Integrated carbon analysis of forest management practices and wood substitution. Can J For Res 37:671–681CrossRefGoogle Scholar
  10. Forsberg G (2000) Biomass energy transport analysis of bioenergy transport chains using life cycle inventory method. Biomass Bioenergy 19:17–30CrossRefGoogle Scholar
  11. Garcia-Gonzalo J, Peltola H, Briceño-Elizondo E, Kellomäki S (2007) Changed thinning regimes may increase carbon stock under climate change: a case study from a Finnish boreal forest. Clim Change 81:431–454CrossRefGoogle Scholar
  12. Gasol CM, Gabarrell X, Anton A, Rigola M, Carrasco J, Ciria P, Rieradevall J (2009) LCA of poplar bioenergy system compared with Brassica carinata energy crop and natural gas in regional scenario. Biomass Bioenergy 33:119–129CrossRefGoogle Scholar
  13. Hakkila P (1991) Hakkuupoistuman latvusmassa (Harvesting of logging residues). Folia Forestalia 773:24 ppGoogle Scholar
  14. Hakkila P (2004) Developing technology for large-scale production of forest chips. Wood energy technology programme 1999–2003. National technology agency report 6, 99 ppGoogle Scholar
  15. Hall JP (2002) Sustainable production of forest biomass for energy. For Chronicle 78:391–396Google Scholar
  16. Hämäläinen J, Oijala T, Rajamaki J (1992) Metsämaan muokkauksen kustannuslaskentamalli (Cost calculation model for site preparation). Metsateho, Helsinki, 13 pp (in Finnish)Google Scholar
  17. Heikkilä J, Sirén M, Ahtikoski A, Hynynen J, Sauvula T, Lehtonen M (2009) Energy wood thinning as a part of the stand management of Scots pine and Norway spruce. Silva Fenn 43:129–146Google Scholar
  18. Hoen HF, Solberg B (1994) Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. For Sci 40:429–451Google Scholar
  19. Hynynen J, Ojansuu R, Hökkä H, Siipilehto J, Salminen H, Haapala P (2002) Models for predicting stand development in MELA system. Finnish Forest Research Institute, Research papers 835, 116 ppGoogle Scholar
  20. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Marquies M, Averyt K, Tignor MMB, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  21. Jacobson S, Kukkola M, Mälkönen E, Tveite B (2000) Impact of whole-tree harvesting and compensatory fertilization on growth of coniferous thinning stands. For Ecol Manage 129:41–51CrossRefGoogle Scholar
  22. Kaipainen T, Liski J, Pussinen A, Karjalainen T (2004) Managing carbon sinks by changing rotation length in European forests. Environ Sci Policy 7:205–219CrossRefGoogle Scholar
  23. Karjalainen T (1996) Dynamics and potentials of carbon sequestration in managed stands and wood products in Finland under changing climatic conditions. For Ecol Manage 80:113–132CrossRefGoogle Scholar
  24. Karjalainen T, Asikainen A (1996) Greenhouse gas emissions from the use of primary energy in forest operations and long-distance transportation of timber in Finland. Forestry 69:215–228CrossRefGoogle Scholar
  25. Karjalainen T, Asikainen A, Ilavsky J, Zamboni R, Hotari K-E, Röser D (2004) Estimating of energy wood potential in Europe. Working papers of the Finnish Forest Research Institute 6, 43 ppGoogle Scholar
  26. Kärkkäinen L, Matala J, Harkonen K, Kellomäki S, Nuutinen T (2008) Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass Bioenergy 32:934–943CrossRefGoogle Scholar
  27. Kellomäki S, Kolström M (1994) The influence of climate change on the productivity of Scots pine, Norway spruce, Pendula birch and Pubescent birch in southern and northern Finland. For Ecol Manage 65:201–217CrossRefGoogle Scholar
  28. Kellomäki S, Väisänen H, Hänninen H, Kolström T, Lauhanen R, Mattila U, Pajari B (1992) SIMA: a model for forest succession based on the carbon and nitrogen cycles with application to silvicultural management of the forest ecosystem. Silva Carelica 22:1–85Google Scholar
  29. Kellomäki S, Peltola H, Nuutinen T, Korhonen K, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc 363:2341–2351Google Scholar
  30. Kilpeläinen A, Alam A, Strandman H, Kellomäki S (2011) Life cycle assessment tool for estimating net CO2 exchange of forest production. Global Change Biol Bioenergy. doi: 10.1111/j.1757-1707.2011.01101.x
  31. Kirschbaum MUF (2003) To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass Bioenergy 24:297–310CrossRefGoogle Scholar
  32. Kolström M (1998) Ecological simulation model for studying diversity of stand structure in boreal forests. Ecol Modell 111:17–36CrossRefGoogle Scholar
  33. Korpilahti A (1998) Finnish forest energy systems and CO2 consequences. Biomass Bioenergy 15:293–297CrossRefGoogle Scholar
  34. Kuitto PJ, Keskinen S, Lindroos J, Oijala T, Rajamäki J, Räsänen T, Terävä J (1994) Mechanized cutting and forest haulage. Tiedotus Metsäteho, Helsinki. Report 410, 47 pp (in Finnish with English summary)Google Scholar
  35. Laitila J, Ala-Fossi A, Vartiamäki T, Ranta T, Asikainen A (2007) Kantojen noston ja metsäkuljetuksen tuottavuus (Productivity of stump lifting and forest haulage). Metlan työraportteja 46:1-26 (in Finnish). Accessed 25 June 2010
  36. Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2001) Which rotation length is favorable for carbon sequestration? Can J For Res 31:2004–2013CrossRefGoogle Scholar
  37. Maclaren JP (2000) Trees in the greenhouse—the role of forestry in mitigating the enhanced greenhouse effect. Rotorua, New Zealand. Forest research bulletin no. 219, 72 ppGoogle Scholar
  38. Mäkinen H, Isomäki A (2004a) Thinning intensity and growth of Scots pine stands in Finland. For Ecol Manage 201:311–325CrossRefGoogle Scholar
  39. Mäkinen H, Isomäki A (2004b) Thinning intensity and growth of Norway spruce stands in Finland. Forestry 77:349–364CrossRefGoogle Scholar
  40. Mälkki H, Virtanen Y (2003) Selected emissions and efficiencies of energy systems based on logging and sawmill residues. Biomass Bioenergy 24:321–327CrossRefGoogle Scholar
  41. Peltola A (2005) Metsätilastollinen vuosikirja (Finnish statistical yearbook of forestry). Finnish Forest Research Institute, 421 pp (in Finnish)Google Scholar
  42. Petritsch R, Hasenauer H, Pietsch SA (2007) Incorporating forest growth response to thinning within biome-BGC. For Ecol Manage 242:324–336CrossRefGoogle Scholar
  43. Pohjola J, Valsta L (2007) Carbon credits and management of Scots Pine and Norway spruce stands in Finland. For Policy Econ 9:789–798CrossRefGoogle Scholar
  44. Profft I, Mund M, Weber G-E, Weller E, Schulze E-D (2009) Forest management and carbon sequestration in wood product. Eur J For Res 128:399–413CrossRefGoogle Scholar
  45. Pussinen A, Karjalainen T, Mäkipää R, Valsta L, Kellomäki S (2002) Forest carbon sequestration and harvest in Scots pine stand under different climate and nitrogen deposition scenarios. For Ecol Manage 158:103–115CrossRefGoogle Scholar
  46. Repo A, Tuomi M, Liski J (2010) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. Global Change Biol Bioenergy. doi: 10.1111/j.1757-1707.2010.01065.x
  47. Röser D, Asikainen A, Stupak I, Pasanen K (2008) Forest energy resources and potentials. In: Röser D, Asikainen A, Raulund-Rasmussen K, Stupak I (eds) Sustainable use of forest biomass for energy. Springer, The Netherlands, pp 9–28CrossRefGoogle Scholar
  48. Ruota J, Kellomäki S, Peltola H, Asikainen A (2011) Impacts of thinning and fertilization on timber and energy wood production in Norway spruce and Scots pine: scenario analyses based on ecosystem model simulations. Forestry 84(2):159–175CrossRefGoogle Scholar
  49. Schlamadinger B, Spitzer J, Kohlmaier GH, Lüdeke M (1995) Carbon balance of bioenergy from logging residues. Biomass Bioenergy 8:221–234CrossRefGoogle Scholar
  50. Seely B, Welham C, Kimmins H (2002) Carbon sequestration in a boreal forest ecosystem: results from the ecosystem simulation model, FORECAST. For Ecol Manage 169:123–135CrossRefGoogle Scholar
  51. Tapio (2006) Hyvän metsänhoidon suositukset (Recommendations for forest management). Metsätalouden kehittämiskeskus Tapio, Metsäkustannus Oy, 100 pp (in Finnish)Google Scholar
  52. Thornley JHM, Cannell MGR (2000) Managing forests for wood yield and carbon storage: a theoretical study. Tree Physiol 20:477–484PubMedGoogle Scholar
  53. Väkevä J, Pennanen O, Örn J (2004) Puutavara–autojen polttoaineen kulutus (Fuel consumption of timber trucks). Metsätehon raportti 166:32 pp (in Finnish)Google Scholar
  54. Wihersaari M (2005) Greenhouse gas emissions from final harvest fuel chip production in Finland. Biomass Bioenergy 28:435–443CrossRefGoogle Scholar
  55. Yoshioka T, Aruga K, Nitami T, Kobayashi H, Sakai H (2005) Energy and carbon dioxide (CO2) balance of logging residues as alternative energy resources: system analysis based on the method of a life cycle inventory (LCI) analysis. J For Res 10:125–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ashraful Alam
    • 1
  • Antti Kilpeläinen
    • 1
    • 2
  • Seppo Kellomäki
    • 1
  1. 1.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  2. 2.Finnish Environment InstituteJoensuu officeJoensuuFinland

Personalised recommendations