European Journal of Forest Research

, Volume 130, Issue 6, pp 971–981 | Cite as

Modelling and mapping the suitability of European forest formations at 1-km resolution

  • Stefano CasalegnoEmail author
  • Giuseppe Amatulli
  • Annemarie Bastrup-Birk
  • Tracy Houston Durrant
  • Anssi Pekkarinen
Original Paper


Proactive forest conservation planning requires spatially accurate information about the potential distribution of tree species. The most cost-efficient way to obtain this information is habitat suitability modelling i.e. predicting the potential distribution of biota as a function of environmental factors. Here, we used the bootstrap-aggregating machine-learning ensemble classifier Random Forest (RF) to derive a 1-km resolution European forest formation suitability map. The statistical model use as inputs more than 6,000 field data forest inventory plots and a large set of environmental variables. The field data plots were classified into different forest formations using the forest category classification scheme of the European Environmental Agency. The ten most dominant forest categories excluding plantations were chosen for the analysis. Model results have an overall accuracy of 76%. Between categories scores were unbalanced and Mesophitic deciduous forests were found to be the least correctly classified forest category. The model’s variable ranking scores are used to discuss relationship between forest category/environmental factors and to gain insight into the model’s limits and strengths for map applicability. The European forest suitability map is now available for further applications in forest conservation and climate change issues.


Ensemble modelling Machine learning Random forest Forest Focus Worldclim 



We would like to thank Konrad Bogner from the Natural Hazards-Prediction and Mitigation Action at JRC for R scripting support. We are also very grateful to Hannes I. Reuter, Cesare Furlanello and to JRC Forest action staff for constructive remarks.

Supplementary material

10342_2011_480_MOESM1_ESM.pdf (706 kb)
Supplementary material (PDF 707 KB)


  1. Andelman SJ, Willig MR (2002) Alternative configurations of conservation reserves for paraguayan bats: consideration of spatial scale. Conserv Biol 16:1352–1363CrossRefGoogle Scholar
  2. Araújo MB, Pearson R, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Global Change Biol 11:1504–1513CrossRefGoogle Scholar
  3. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16(6):743–753CrossRefGoogle Scholar
  4. Austin M (1998) An ecological perspective on biodiversity investigations: examples from australian eucalypt forests. Ann Mo Bot Gard 85:2–17CrossRefGoogle Scholar
  5. Austin M (2007) Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol Model 200(1–2):1–19CrossRefGoogle Scholar
  6. Austin MP, Smith TM (1989) A new model for the continuum concept. Plant Ecol 83(1):35–47CrossRefGoogle Scholar
  7. Bahn V, McGill BJ (2007) Can niche-based distribution models outperform spatial interpolation? Glob Ecol Biogeogr 16(6):733–742CrossRefGoogle Scholar
  8. Bolliger J, Kienast F, Bugmann H (2000) Comparing models for tree distributions: concept, structures, and behavior. Ecol Model 134(1):89–102CrossRefGoogle Scholar
  9. Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of european beech a review. Forestry 80(4):413–429CrossRefGoogle Scholar
  10. Bonn A, Schroder B (2001) Habitat models and their transfer for single and multi species groups: a case study of carabids in an alluvial forest. Ecography 24(4):483–496CrossRefGoogle Scholar
  11. Breiman L (1996) Bagging predictors. Mach Learn 24(3):123–140Google Scholar
  12. Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  13. Cabeza M, Moilanen A (2006) Replacement cost: a useful measure of site value for conservation planning. Biol Conserv 132:336–342CrossRefGoogle Scholar
  14. Coudun C, Gegout JC (2006) The derivation of species response curves with gaussian logistic regression is sensitive to sampling intensity and curve characteristics. Ecol Model 199(2):164–175CrossRefGoogle Scholar
  15. Derous S, Agardy T, Hillewaert H, Hostens K, Jamieson G, Lieberknecht L, Mees J, Moulaert I, Olenin S, Paelinckx D, Rabaut M, Rachor E, Roff J, Stienen EWM, Wal JTVD, Lancker VV, Verfaillie E, Vincx M, Weslawski JM, Degraer S (2007) A concept for biological valuation in the marine environment. Oceanologia 49(1):99–127Google Scholar
  16. Diaz-Uriarte R (2007) Genesrf and varselrf: a web-based tool and r package for gene selection and classification using random forest. BMC Bioinformatics 8(1):328. doi: 10.1186/1471-2105-8-328.
  17. Dormann C (2007) Promising the future? global change projections of species distributions. Basic Appl Ecol 8:387–397CrossRefGoogle Scholar
  18. EC (2003) European commission regulation no 2152/2003 ; forest focus : monitoring of forests and environmental interactions in the communityGoogle Scholar
  19. EEA (2006) European forest types—categories and types for sustainable forest management reporting and policy. Tech. Rep. 9, European Environmental AgencyGoogle Scholar
  20. Elith J, H Graham C, P Anderson R, Dudik M, Ferrier S, Guisan A,J Hijmans R, Huettmann F, R Leathwick J, Lehmann A, Li J, G LohmannL, A Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, McCM Overton J, Townsend Peterson A, J Phillips S, Richardson K, Scachetti-Pereira R, E Schapire R, Soberon J, Williams S, S Wisz M, E Zimmermann N (2006) Novel methods improve prediction of species’distributions from occurrence data. Ecography 29(2):129–151Google Scholar
  21. Fang J, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (fagus l.) species in the world. J Biogeogr 33(10):1804–1819CrossRefGoogle Scholar
  22. Farr TG, Rosen P, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45Google Scholar
  23. Ferrier S, Guisan A (2006) Spatial modelling of biodiversity at the community level. J Appl Ecol 43(3):393–404CrossRefGoogle Scholar
  24. Goetz J (1935) Buk (Fagus silvatica L.) w pozna skiemna wschodnim pograniczu swego rozmieszczenia. Prace 1-go polskiego Naukowego Zjazdu Leniczego, Pozna, PolandGoogle Scholar
  25. Guisan A, Theurillat J (2000) Equilibrium modeling of alpine plant distribution: how far we can go? Phytocoenologia 30:353–384Google Scholar
  26. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186CrossRefGoogle Scholar
  27. Guisan A, Lehmann A, Ferrier S, Austin M, Overton JMC, Aspinall R, Hastie T (2006) Making better biogeographical predictions of species’ distributions. J Appl Ecol 43(3):386–392CrossRefGoogle Scholar
  28. Hampe A (2004) Bioclimate envelope models: what they detect and what they hide. Glob Ecol Biogeogr 13(5):469–471CrossRefGoogle Scholar
  29. Heineke H, Eckelmann W, Thomasson A, Jones R, Montanarella L, Buckley B (1998) Land information systems developments for planning the sustainable use of land resources. Research Report, European Soil Boureau, LuxembourgGoogle Scholar
  30. Hijmans R, Cameron S, Parra J, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  31. Hjelmqvist H (1940) Studien ber die Abhngigkeit der Baumgrenzen von der Temperaturverhltnissen unter besonderer Bercksichtigung der Buche und ihrer Klimarassen. Blom, Lund, GermanyGoogle Scholar
  32. Hofmann G (2001) Mitteleuropische waldkosysteme in wort und bildGoogle Scholar
  33. Jahn G (1991) Temperate deciduous forests, Elsevier, Amsterdam, chap Temperate deciduous forests, pp 377–502Google Scholar
  34. Kenk G, Guehne S (2001) Management of transformation in central Europe. For Ecol Manag 151:107–119CrossRefGoogle Scholar
  35. King D, Jones R, Thomasson A (1995) European land information systems for agro-environmental monitoring. Office for the Official Publications of the European Communities, LuxembourgGoogle Scholar
  36. Lenihan J, Neilson R (1993) A rule-based vegetation formation model for canada. J Biogeogr 20:615–628CrossRefGoogle Scholar
  37. Liaw A, Wiener M (2002) Classification and regression by random forests. R News 2/3(18–22.)Google Scholar
  38. Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72(3):445–463CrossRefGoogle Scholar
  39. Maggini R, Lehmann A, Zimmermann NE, Guisan A (2006) Improving generalized regression analysis for the spatial prediction of forest communities. J Biogeogr 33(10):1729–1749CrossRefGoogle Scholar
  40. Merganič J, Quednau HD, Melko S (2004) Relations between selected geomorphology features and tree species diversity of forest ecosystems and interpolation on a regional level. Eur J Forest Res 123(1):75–85CrossRefGoogle Scholar
  41. Moisen GG, Edwards JTC, Osborne PE (2006) Further advances in predicting species distributions. Ecol Model 199(2):129–131CrossRefGoogle Scholar
  42. Nicodemus K, Malley J, Strobl C, Ziegler A (2010) The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics 11(1):110. doi: 10.1186/1471-2105-11-110.
  43. Oberhuber W (2004) Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Phys 24:291–301Google Scholar
  44. Ohlemuller R, Gritti ES, Sykes MT, Thomas CD (2006) Quantifying components of risk for european woody species under climate change. Global Change Biol 12(9):1788–1799CrossRefGoogle Scholar
  45. Ozenda P (1994) Vgtation du continent Europen. Delachaux et Niestl, ParisGoogle Scholar
  46. Pebesma EJ (2004) Multivariable geostatistics in s: the gstat package. Comput Geosci 30(7):683–691CrossRefGoogle Scholar
  47. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199CrossRefGoogle Scholar
  48. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  49. R Development Core Team: (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  50. Rossi S, Deslauries A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152(1):1–12Google Scholar
  51. Segurado P, Araújo MB, Kunin WE (2006) Consequences of spatial autocorrelation for niche-based models. J Appl Ecol 43(3):433–444CrossRefGoogle Scholar
  52. Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8(25)Google Scholar
  53. Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random forests. BMC Bioinformatics 9(307)Google Scholar
  54. Svenning JC, Skov F (2004) Limited filling of the potential range in european tree species. Ecol Lett 7(7):565–573CrossRefGoogle Scholar
  55. Svenning JC, Skov F (2007) Could the tree diversity pattern in europe be generated by postglacial dispersal limitation? Ecol Lett 10(6):453–460PubMedCrossRefGoogle Scholar
  56. Therneau T, Atkinson E (1997) An introduction to recursive partitioning using the rpart routines. Tech. Rep. Technical report no. 61, Mayo ClinicGoogle Scholar
  57. Thuiller W, Lavorel S, Sykes MT, Araújo MB (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in europe. Divers Distrib 12(1):49–60CrossRefGoogle Scholar
  58. Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geol Ore Depos 29(6):551–554Google Scholar
  59. Van Horn B (2002) Approaches to habitat modelling: the tensions between pattern and process and between specificity and generality. In: Scott J, Heglund P, Morrison M, Haufler J, Raphael M, Wall W, Samson F (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Covelo, CA, pp 63–72Google Scholar
  60. Venables W, Ripley B (2002) Modern applied statistics with S. Springer, New York, USAGoogle Scholar
  61. Zimmermann NE, Kienast F (1999) Predictive mapping of alpine grasslands in switzerland: species versus community approach. J Veg Sci 10:469–482CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefano Casalegno
    • 1
    • 2
    Email author
  • Giuseppe Amatulli
    • 1
  • Annemarie Bastrup-Birk
    • 3
  • Tracy Houston Durrant
    • 1
  • Anssi Pekkarinen
    • 4
  1. 1.Institute for Environment and SustainabilityJoint Research Centre of the European CommissionIspraItaly
  2. 2.Predictive Models for Biomedicine and Environment, Fondazione Bruno KesslerTrentoItaly
  3. 3.Life Sciences, Forest and LandscapeUniversity of CopenhagenFrederiksbergDenmark
  4. 4.Finnish Forest Research Institute (Metla)VantaaFinland

Personalised recommendations