Advertisement

European Journal of Forest Research

, Volume 130, Issue 5, pp 799–812 | Cite as

Methods of surveying the thickness of humous horizons using ground penetrating radar (GPR): an example from the Garmisch-Partenkirchen area of the Northern Alps

  • Jennifer Winkelbauer
  • Jörg Völkel
  • Matthias Leopold
  • Natalie Bernt
Original Paper

Abstract

Ecological studies commonly demand elaborate knowledge of the distribution pattern of humous horizons, especially in forest ecosystems with high humus variability. Conventional investigative methods are time-consuming and surface-destructive. Ground penetrating radar (GPR), in contrast, offers a fast and non-destructive method of portraying the shallow subsurface. Against this background, the reliability of GPR-derived metric data on terrestrial humous horizons was tested at a study site in the altimontane zone of the Bavarian Alps (1,260 m a.s.l.). The GPR survey, using a shielded bistatic antenna device at 800 MHz, is based on eight parallel lines within a 30 × 30 m plot. The metric interpretation of the GPR results is validated by a trench, which records the thickness of humous horizons at a 10-cm interval, and is compared to conventional sampling methods, represented by 18 soil monolith profiles of both random and grid-based distribution. The results show that it is not possible to resolve the borders of single humous horizons. The delineation of humous against non-humous horizons, however, shows correlation (R = 0.553) with the reference data and delivers reliable data on the average thickness and variation of humous horizons. The observed thickness deviations between GPR and the trench line range between −9.5 and 7.5 cm, with remarkably narrow deviations of −2 to 2 cm or less in 50% of the cases. In summary, supported by the high number of data records (n = 1,727), GPR creates a much better and none destructive image of the actual humus distribution pattern compared to conventional methods.

Keywords

Forest soil Organic matter Humic horizons Ground penetrating radar (GPR) Bavarian Alps 

References

  1. Ad-hoc-AG Boden (2005) Bodenkundliche Kartieranleitung. Edited by Bundesanstalt für Geowissenschaften und Rohstoffe & Geologische Landesämter in der Bundesrepublik Deutschland, 5th edn. HannoverGoogle Scholar
  2. Asprion U (1998) Ground-Penetrating Radar (GPR) analysis in aquifer-edimentology: case studies, with an emphasis on glacial systems of SW Germany. Tübinger Geowissenschaftliche Arbeiten Serie A, vol 43. TübingenGoogle Scholar
  3. Bahrenberg G, Giese E, Nipper J (1990) Statistische Methoden in der Geographie. Borntraeger, StuttgartGoogle Scholar
  4. Barton CVM, Montagu KD (2004) Detection of tree roots and determination of root diameters by GPR under optimal conditions. Tree Physiol 24:1323–1332PubMedGoogle Scholar
  5. Bednorz F, Reichstein M, Broll G, Holtmeier F-K, Urfer W (2000) Humus forms in the forest-alpine tundra ecotone at Stillberg (Dischmatal, Switzerland): spatial heterogeneity and classification. Arct Antarct Alp Res 32:21–29CrossRefGoogle Scholar
  6. Bens O, Buzko U, Sieber S, Hüttl F (2006) Spatial variability of O layer thickness and humusforms under different pine-beach forest transformation stages in NE Germany. J Plant Nutr Soil Sc 169:1–11CrossRefGoogle Scholar
  7. Beres M, Haeni F (1991) Application of ground-penetrating radar methods in hydrogeologic studies. Ground Water 29:375–386CrossRefGoogle Scholar
  8. Beyer L (1996) Humusformen und–Typen. In: Blume H-P (ed) Handbuch der Bodenkunde. Ecomed, Landsberg am Lech, pp 1–20Google Scholar
  9. Bjelm L (1980) Geological interpretation with subsurface interface radar in peatlands. In: Proceedings of the 6th international peat congress. Int Peat Soc, Duluth, pp 7–8Google Scholar
  10. Bochter R (1984) Böden naturnaher Bergwaldstandorte auf carbonatreichen Substraten. Nationalpark Berchtesgaden Forschungsberichte, vol 6. BerchtesgadenGoogle Scholar
  11. Bristow C (1995) Facies analysis in the Lower Greensand using ground penetrating radar. J Geol Soc London 152:591–598CrossRefGoogle Scholar
  12. Bristow CS, Jol HM (2003) Ground penetrating radar in sediments, geological society special publication no 211. Geological Society Publishing House, LondonGoogle Scholar
  13. Butnor JR, Doolittle JA, Kress L, Cohen S, Johnson KH (2001) Use of ground-penetrating radar to study tree roots in southeastern Unites States. Tree Physiol 21:1269–1278PubMedGoogle Scholar
  14. Butnor JR, Doolittle JA, Johnsen KH, Samuelson L, Stokes T, Kress L (2003) Utility of ground-penetrating radar as a root biomass survey tool in forest system. Soil Sci Soc Am J 67:1607–1615CrossRefGoogle Scholar
  15. Collins ME, Doolittle JA (1987) Using ground-penetrating radar to study soil microvariability. Soil Sci Soc Am J 51:491–493CrossRefGoogle Scholar
  16. Collins ME, Doolittle JA, Rourke RV (1989) Mapping depth to bedrock on a glaciated landscape with ground-penetrating radar. Soil Sci Soc Am J 53:1806–1812CrossRefGoogle Scholar
  17. Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Change Biol 14:868–877CrossRefGoogle Scholar
  18. Conyers LB, Goodman D (1997) Ground-penetrating radar: an introduction for archaeologists. Altamira Press, Walnut CreekGoogle Scholar
  19. Cox KD, Scherm H, Serman N (2005) GPR to detect and quantify residual root fragments following peach orchard clearing. HortTech 15:600–607Google Scholar
  20. Doben K, Risch H (1996) Nördliche Kalkalpen (Oberostalpin). In: Bayerisches Geologisches Landesamt (ed) Erläuterungen zur Geologische Karte von Bayern. München, pp 220–235Google Scholar
  21. Doolittle JA, Asmussen LE (1992) Ten years of application of ground penetrating radar by the United States Department of Agriculture. In: Hänninen P, Autio S (eds) Fourth international conference on GPR, Rovaniemi, Finland. Geological Survey of Finland Special Paper 16, pp 139–147Google Scholar
  22. Doolittle JA, Bellantoni NF (2010) The search for graves with ground-penetrating radar in Connecticut. J Archaeol Sci 37:941–949CrossRefGoogle Scholar
  23. Doolittle JA, Collins ME (1995) Use of soil information to determine application of ground penetrating radar. J Appl Geophys 33(1–3):101–108Google Scholar
  24. Doolittle JA, Jenkinson B, Hopkins D, Ulmer M, Tuttle W (2006) Hydropedological investigations with ground-penetrating radar (GPR): Estimating water-table depths and local ground-water flow pattern in areas of coarse-textured soils. Geoderma 131:317–329CrossRefGoogle Scholar
  25. Doolittle JA, Minzenmayer FE, Waltman SW, Benham EC, Tuttle JW, Peaslee SD (2007) Ground-penetrating radar soil suitability map of the conterminous United States. Geoderma 141:416–421CrossRefGoogle Scholar
  26. Dowdall M, Standring W, Shaw G, Strand P (2008) Will global warming affect soil-to-plant transfer of radionuclides. J Environ Radioactiv 99:1736–1745CrossRefGoogle Scholar
  27. FAO, ISRIC, ISSS (1998) World reference base for soil resources. World soil resources report, vol 84. RomeGoogle Scholar
  28. Forkmann B, Petzold H (1989) Prinzip und Anwendung des Gesteinsradars zur Erkundung des Nahbereichs. Freiberger Forschungshefte, vol C 432. LeipzigGoogle Scholar
  29. Gulder H-J, Kölbel M (1993) Waldbodeninventur in Bayern. Forstliche Forschungsberichte, vol 132. MünchenGoogle Scholar
  30. Hänninen P (1992) Application of ground penetrating radar techniques to peatland investigations. In: Hänninen P, Autio S (eds) Fourth international conference on GPR, Rovaniemi, Finland. Geological Survey of Finland Special Paper 16, pp 217–221Google Scholar
  31. Holden J (2006) Sediment and particulate carbon removal by pipe erosion increase over time in blanket peatlands as a consequence of land drainage. J Geophys Res 111. doi: 10.1029/2005JF000386
  32. Holden J, Burt TP, Vilas M (2002) Application of ground-penetrating radar to the identification of subsurface piping in blanket peat. Earth Surf Proc Land 27:235–249CrossRefGoogle Scholar
  33. Huggenberger P (1993) Radar facies: recognition of characteristic braided river structures of the Pleistocene Rhine gravel (NE part of Switzerland). In: Best J, Bristow C (eds) Braided rivers. Geological Society special publication no 75. Geological Society Publishing House, London, pp 163–167Google Scholar
  34. Johnson KD, Scatena FN, Johnson AH, Pan Y (2009) Controls on soil organic matter content within a northern hardwood forest. Geoderma 148:346–356CrossRefGoogle Scholar
  35. Jol HM, Bristow CS (2003) GPR in sediments: a good practice guide. In: Bristow CS, Jol HM (eds) Ground penetrating radar in sediments. Geological society special publication no 211. Geological Society Publishing House, London, pp 9–27Google Scholar
  36. Jol HM, Smith DG (1991) Ground penetrating radar of northern lacustrine deltas. Can J Earth Sci 28(12):1939–1947CrossRefGoogle Scholar
  37. Keary P, Brooks M (1991) An introduction to geophysical exploration. Blackwell, BostonGoogle Scholar
  38. Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition: still a topic of debate. Soil Biol Biochem 38:2510–2518CrossRefGoogle Scholar
  39. Lapen DR, Moorman BJ, Price JS (1996) Using ground-penetrating radar to delineate subsurface features along a wetland catena. Soil Sci Soc Am J 60:923–931CrossRefGoogle Scholar
  40. Leopold M, Völkel J (2003) GPR images of periglacial slope deposits beneath peat bogs in the Central European Highlands, Germany. In: Bristow CS, Jol HM (eds) Ground penetrating radar in sediments. Geological Society special publication no 211. Geological Society Publishing House, London, pp 181–189Google Scholar
  41. Leopold M, Völkel J (2006) The Celtic Rampard of the Oppidum at Manching: an example for a multi-methodological interaction of soil science and archaeology in Southern Germany. Z Geomorphol Suppl 142:135–148Google Scholar
  42. Leopold M, Völkel J, Heine K (2006) A ground penetrating radar survey of late Holocene fluvial sediments in northwest Namibian river valleys: Characterisation and comparison. J Geol Soc London 163:923–936CrossRefGoogle Scholar
  43. Leopold M, Plöckl T, Forstenaicher G, Völkel J (2010) Integrating pedological and geophysical methods to enhance the informative value of an archaeological prospection: the example of a Roman villa rustica near Regensburg, Germany. J Archaeol Sci. doi:  10.1016/j.jas.2010.01.033
  44. Liski J (1995) Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand: effect of trees and implications for sampling. Silva Fenn 29(4):255–266Google Scholar
  45. Liski J (1997a) Carbon storage in forest soil of Finland 1. Effect of thermoclimate. Biogeochemistry 36:239–260CrossRefGoogle Scholar
  46. Liski J (1997b) Carbon storage in forest soil of Finland 2. Size and regional pattern. Biogeochemistry 36:261–274CrossRefGoogle Scholar
  47. Liski J, Lehtonen A, Palosuo T, Peltoniemi M, Eggers T, Muukkonen P, Mäkipaä R (2006) Carbon accumulation in Finland’s forests 1922–2004. An estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Ann For Sci 63:687–698CrossRefGoogle Scholar
  48. Lowry CS, Fratta D, Anderson MP (2009) Ground penetrating radar and spring formation in a groundwater dominated peat wetland. J Hydrol 373:68–79CrossRefGoogle Scholar
  49. Martin WKE, Timmer VR (2006) Capturing spatial variability of soil and litter properties in a forest stand by landform segmentation procedures. Geoderma 132:169–181CrossRefGoogle Scholar
  50. Militzer H, Weber F (1985) Angewandte Geophysik 2: Geoelektrik, Geothermik, Radiometrie, Aerogeophysik. Springer, WienGoogle Scholar
  51. Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Sci Rev 66:261–330CrossRefGoogle Scholar
  52. Radzevicius S, Guy E, Daniels J (2000) Pitfalls in GPR data interpretation: differentiating stratigraphy and buried objects from periodic antenna and target effects. Geophys Res Lett 27:3393–3396CrossRefGoogle Scholar
  53. Rehfuess K (1990) Waldböden: Entwicklung. Eigenschaften und Nutzung. Parey, Hamburg/Berlin, pp 1–294Google Scholar
  54. Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, ChichesterGoogle Scholar
  55. Rosa E, Lalorcque M, Pellerin S, Gagné S, Fournier B (2009) Determining the number of manual measurements required to improbe peat thickness estimations by ground penetrating radar. Earth Surf Proc Land 34:377–383CrossRefGoogle Scholar
  56. Sandmeier K (2004) Reflexw manual ver. 3.5. KarlsruheGoogle Scholar
  57. Shaap M, Bouten W, Verstraten J (1997) Forest floor water content dynamics in a Douglas fir stand. J Hydrol 201:367–383CrossRefGoogle Scholar
  58. Sheriff RE, Geldart LP (1982) Exploration seismology volume 1: history, theory and data acquisition. Cambridge University Press, New YorkGoogle Scholar
  59. Sperl C (1999) Erfassung der raum-zeitlichen variation des Bodenwassergehaltes in einem Agrarökosystem mit dem Ground-Penetrating Radar. FAM-Bericht, vol 37. AachenGoogle Scholar
  60. Steelman CM, Endres AL (2009) Evolution of high-frequency ground-penetrating radar direct ground wave propagation during thin frozen soil layer development. Cold Reg Sci Technol 57:116–122CrossRefGoogle Scholar
  61. Stover DB, Day FP, Butnor JR, Drake BG (2007) Effect of elevated CO2 on coarse-root biomass in florida scrub detected by ground-penetrating radar. Ecology 88:1328–1334PubMedCrossRefGoogle Scholar
  62. Truman CD, Perkins HF, Asmussen LE, Allison HD (1988) Using ground-penetrating radar to investigate variability in selected soil properties. J Soil Water Cons 43:341–345Google Scholar
  63. Ulriksen P (1981) Investigations of peat thickness with radar. In: Proceedings of the 6th international peat congress. Int Peat Soc, DuluthGoogle Scholar
  64. Van Dam RL (2001) Causes of ground-penetrating radar reflections in sediments. PHD thesis, Vrije Universiteit, AmsterdamGoogle Scholar
  65. Völkel J (2002) Bioverfügbarkeit von Radiocäsium in unterschiedlichen naturräumlichen Einheiten Bayerns. Regensbg Beitr Bodenkd, Landschaftsökol Quartärforsch, vol 1. Available via http://www.bibliothek.uni-regensburg.de/opus/volltexte/2004/335. Accessed 15 Feb 2010
  66. Völkel J, Leopold M, Roberts MC (2001) The radar signatures and age of periglacial slope deposits in the Central European Highlands of Germany. Permafrost Periglac 12:379–387CrossRefGoogle Scholar
  67. Von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition: what do we know. Bioland Fert Soils 46:1–15CrossRefGoogle Scholar
  68. Wälder K, Frischbier N, Bredemeier M, Näther W, Wagner S (2008) Analysis of OF-layer humus mass variation in a mixed stand of European beech and Norway spruce. An application of structural equation modelling. Ecol Model 213:319–330CrossRefGoogle Scholar
  69. Walentowski H, Gulder H-J (2001) Vom Weißmoos-Kiefernwald bis zur Traubenkirschen-Erlen/Eschenwäldern. LWF aktuell 31:23–27Google Scholar
  70. Walthert L, Lüscher P, Luster J, Peter B (2002) Langfristige Waldökosystem-Forschung LWF. KernprojektGoogle Scholar
  71. Warner BG, Nobes DC, Theimer BD (1990) An application of ground penetrating radar to peat stratigraphy of Ellice Swamp, Southwestern Ontario. Can J Earth Sci 27(7):932–938CrossRefGoogle Scholar
  72. Weihermüller L, Huisman JA, Lambot S, Herbst M, Vereecken H (2007) Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J Hydrol 340:205–216CrossRefGoogle Scholar
  73. Ziekur R (2000) Georadar in der Bodenkunde. Geologisches Jahrbuch der BGR Hannover, vol E 52. Stuttgart, pp 9–34Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jennifer Winkelbauer
    • 1
  • Jörg Völkel
    • 1
  • Matthias Leopold
    • 1
  • Natalie Bernt
    • 1
  1. 1.Department of Geomorphology and Soil ScienceTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations