European Journal of Forest Research

, Volume 129, Issue 6, pp 1203–1211 | Cite as

Thirteen-year monitoring of liming and PK fertilization effects on tree vitality in Norway spruce and European beech stands

  • Mathieu Jonard
  • Fédéric André
  • Pierre Giot
  • François Weissen
  • Raphaèle Van der Perre
  • Quentin Ponette
Original Paper


The chemical fertility of the forest soils in the Belgian Ardenne is threatened by acidifying and eutrophying deposition and by the nutrient removal due to timber harvesting. Experiments were launched to evaluate the ability of liming and fertilization to improve foliar nutrition, maintain or restore crown condition and promote tree growth. In 1995, 10 liming and fertilization trials were installed in even-aged stands of European beech (5) and Norway spruce (5) distributed throughout the Ardenne. In each stand, two treatments were tested: liming with 3,000 kg ha−1 of dolomitic limestone and liming plus fertilization with 0 to 800 kg ha−1 of rock phosphate and 0 to 350 kg ha−1 of K2SO4. Between 1995 and 2006, the foliar Ca and Mg status of spruce and beech trees improved in the limed stands, which limited significantly but did not prevent the decline in crown condition triggered by the summer drought in 2003. For spruce, liming also increased the increment in basal area. The additional fertilization increased the foliar nutrition in P but had no significant effects on soil chemistry and tree vitality.


Liming Fertilization Foliar chemistry Crown condition Tree growth 



This study was conducted with the support of the European Commission (regulation 3528) and of the Walloon Region (DGARNE/DNF) through the framework programs on forest research 1999–2004 and 2004–2009. We would like to thank Frédéric Hardy and François Plume for their technical help, François Herman for the management of the database and Karine Henin for carrying out the chemical analyses.


  1. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934CrossRefGoogle Scholar
  2. André F, Jonard M, Ponette Q (2010) Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium. Sci Total Environ 408:2285–2294CrossRefPubMedGoogle Scholar
  3. Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New YorkGoogle Scholar
  4. Belkacem S, Nys C, Gelhaye D (1992) Effets d’une fertilisation et d’un amendement sur l’immobilisation d’éléments dans la biomasse d’un peuplement adulte d’épicéa commun (Picea abies L Karst). Ann For Sci 49:235–252CrossRefGoogle Scholar
  5. Bonneau M (1995) Fertilisation des forêts dans les pays tempérés. ENGREF, NancyGoogle Scholar
  6. Bonneau M, Landmann G, Ranger J, Dreyer E, Nys C (1995) Fertilization of declining conifers in the Vosges and the Ardennes: effects on soil, nutrient cycling and tree health, growth and physiology. In: Landman G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin, pp 300–326Google Scholar
  7. Comerford NB, De Barros NF (2005) Phosphorus nutrition of forest trees. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. Agronomy Monograph No. 46, Madison, WI, pp 541–558Google Scholar
  8. Croisé L, Cluzeau C, Ulrich E, Lanier M, Gomez A (1999) RENECOFOR—Interprétation des analyses foliaires réalisées dans les 102 peuplements du réseau entre 1993 et 1997 et premières évaluations interdisciplinaires, Office National des Forêts. Département Recherche et Développement, FontainebleauGoogle Scholar
  9. Cronan CS, Grigal DF (1995) Use of calcium/aluminium ratios as indicator of stress in forest ecosystems. J Environ Qual 24:209–226CrossRefGoogle Scholar
  10. Dambrine E, Granier A, Lévy G (1995) Water regime and magnesium deficiency: manipulative experiments in young Norway spruce stands. In: Landman G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin, pp 286–299Google Scholar
  11. Delecour F, Weissen F (1977) Les sols bruns acides des forêts de l’Ardenne : définition et amélioration. Annales de Gembloux 83:27–42Google Scholar
  12. Delincé J, André P (1978) Essais de fertilisation de pessières d’âge moyen. Bull Soc R For Belg 87:247–258Google Scholar
  13. Evers FH (1991) Forest fertilization—present state and history with special reference to South German conditions. Fertil Res 27:71–86CrossRefGoogle Scholar
  14. Fehlen N, Picard JF (1994) Influence de la fertilisation sur la végétation spontanée et la croissance radiale de l’épicéa commun (Picea abies (L) Karst) dans une plantation adulte des Ardennes françaises. Ann For Sci 51:569–580CrossRefGoogle Scholar
  15. Genot V, Colinet G, Bock L (2007) La fertilité des sols agricoles et forestiers en Région wallonne. Dossier scientifique réalisé dans le cadre de l’élaboration du rapport analytique 2006–2007 sur l’état de l’environnement wallon. Etat de l’environnement wallon, Namur, BelgiqueGoogle Scholar
  16. Hanisch B, Kilz E (1990) Monitoring of forest damage: spruce and pine. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  17. Hofmeister J, Oulehle F, Kram P, Hruska J (2008) Loss of nutrients due to litter raking compared to the effect of acidic deposition in two spruce stands, Czech Republic. Biogeochemistry 88:139–151CrossRefGoogle Scholar
  18. Huber C, Kreutzer K, Röhle H, Rothe A (2004) Response of artificial acid-irrigation, liming, and N-fertilisation on elemental concentrations in needles, litter fluxes, volume increment, and crown transparency of a N saturated Norway spruce stand. Forest Ecol Manag 200:3–21CrossRefGoogle Scholar
  19. Jonard M, André F, Dambrine E, Ponette Q, Ulrich E (2009) Temporal trends in the foliar nutritional status of the French, Walloon and Luxembourg broad-leaved plots of forest monitoring. Ann For Sci 66:412CrossRefGoogle Scholar
  20. Jonard M, Augusto L, Hanert E, Achat DL, Bakker MR, Morel C, Mollier A, Pellerin S (2010) Modeling forest floor contribution to phosphorus supply to maritime pine seedlings in two-layered forest soils. Ecol Model 221:927–935CrossRefGoogle Scholar
  21. Katzensteiner K, Glatzel G, Kazda M (1992) Nitrogen-induced nutritional imbalances—a contributing factor to Norway spruce decline in the Bohemian Forest (Austria). Forest Ecol Manag 51:29–42CrossRefGoogle Scholar
  22. Kreutzer K (1995) Effects of forest liming on soil processes. Plant Soil 168–169:447–470CrossRefGoogle Scholar
  23. Lundström US, Bain DC, Taylor AFS, Van Hees PAW (2003) Effects of acidification and its mitigation with lime and wood ash on forest soil processes: a review. Water Air Soil Poll Focus 3:5–28CrossRefGoogle Scholar
  24. Malek S, Martinson L, Sverdrup H (2005) Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the “SAFE” model. Environ Pollut 137:568–573CrossRefPubMedGoogle Scholar
  25. McCarthy MC, Enquist BJ (2007) Consistency between allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol 21:713–720CrossRefGoogle Scholar
  26. McDowell N, Pockman WT, Allen GD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739CrossRefPubMedGoogle Scholar
  27. Mellert KH, Prietzel J, Straussberger R, Rehfuess KE (2004) Long-term nutritional trends of conifer stands in Europe: results from the RECOGNITION project. Eur J Forest Res 123:305–319CrossRefGoogle Scholar
  28. Misson L, Ponette Q, André F (2001a) Regional scale effects of base cation fertilization on Norway spruce and European beech forests situated on acid brown soils: results on soil and foliar chemistry. Ann For Sci 58:699–712CrossRefGoogle Scholar
  29. Misson L, du bus de Warnaffe G, Jonard M (2001b) Effects of fertilization on the vascular ground vegetation of European beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Lieb.) stands. Ann For Sci 58:829–842CrossRefGoogle Scholar
  30. Mohamed AD, Ranger J, Dambrine E, Bonneau M, Gelhaye D, Granier A (1993) The effects of limestone and of limestone plus NPK fertilization on the soil and mass balance of a spruce stand (Picea abies (L.) Karst.) in the Vosges mountains. Forest Ecol Manag 60:291–310CrossRefGoogle Scholar
  31. Mylona S (1996) Sulphur dioxide emissions in Europe 1880–1991 and their effect on sulphur concentrations and depositions. Tellus 48B:662–689Google Scholar
  32. Nys C (1987) Fonctionnement du sol d’un écosystème forestier: étude des modifications dues à la substitution d’une plantation d’épicéa commun (Picea abies) à une forêt feuillue mélangée des Ardennes. Thèse, Université Nancy I, FranceGoogle Scholar
  33. Nys C (1989) Fertilisation, dépérissement et production de l’épicéa commun (Picea abies) dans les Ardennes. Rev For Fr 41:336–347CrossRefGoogle Scholar
  34. Ponette Q, Frankart R, Poma Rojas W, Petit C (1991) Evolution physico-chimique d’un sol brun acide ardennais sous hêtraie suite à l’apport d’amendements minéraux. Pédologie 41:89–100Google Scholar
  35. Ponette Q, Dufey JE, Weissen F (1997) Downward movement of dolomite, kieserite or a mixture of CaCO3 and kieserite through the upper layers of an acid forest soil. Water Air Soil Poll 95:353–379Google Scholar
  36. Poszwa A, Wickman T, Dambrine E, Ferry B, Dupouey JL, Helle G, Schleser G, Breda N (2003) A retrospective isotopic study of spruce decline in the Vosges mountains (France). Water Air Soil Poll Focus 3:201–222CrossRefGoogle Scholar
  37. Prietzel J, Stetter U (2010) Long-term trends of phosphorus nutrition and topsoil phosphorus stocks in unfertilized and fertilized Scot pine (Pinus sylvestris) stands at two sites in Southern Germany. Forest Ecol Manag 259:1141–1150CrossRefGoogle Scholar
  38. Ranger J, Mohamed AD, Gelhaye D (1994) Effet d’un amendement calcaro-magnésien associé ou non à une fertilisation, sur le cycle biogéochimique des éléments nutritifs dans une plantation d’épicéa commun (Picea abies Karst) dépérissante dans les Vosges. Ann For Sci 51:455–475CrossRefGoogle Scholar
  39. Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropp JP, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:569–577CrossRefGoogle Scholar
  40. Renaud JP, Picard JF, Richter C, Legout A, Nys C (2009) Amendements calco-magnésiens et fonctionnement écologique : bilans des expériences conduites dans l’Est de la France (massif vosgien et Ardennes). Rev For Fr 61:283–300Google Scholar
  41. Schaaf W, Hüttl RF (2006) Experiences with liming in European countries—results of long-term experiments. J Forest Sci 52:35–44Google Scholar
  42. Smeets EMW, Faaij APC (2007) Bioenergy potentials from forestry in 2050. Clim Chang 81:353–390CrossRefGoogle Scholar
  43. Solberg S, Dobbertin M, Reinds GJ, Lange L, Andreassen K, Garcia Fernandez P, Hildingsson A, de Vries W (2009) Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. Forest Ecol Manag 258:1735–1750CrossRefGoogle Scholar
  44. Ulrich B (1995) The history and possible causes of forest decline in central Europe, with particular attention to the German situation. Environ Rev 3:262–276Google Scholar
  45. Van den Burg J (1985) Foliar analysis for determination of tree nutrient status: a compilation of literature data. Rijksinstituut voor onderzoek in de bos en landschapsbouw. De Dorschkamp, WageningenGoogle Scholar
  46. Van den Burg J (1990) Foliar analysis for determination of tree nutrient status: a compilation of literature data 2. Literature 1985-1989. De Dorschkamp, Institute for forestry and urban ecology, WageningenGoogle Scholar
  47. Van Praag HJ, Weissen F (1976) Nutrition azotée des peuplements forestiers ardennais. Bull Soc R For Belg 83:175–188Google Scholar
  48. Van Praag HJ, Weissen F (1986) Foliar mineral composition, fertilization and dieback of Norway spruce in the Belgian Ardennes. Tree Physiol 1:169–176PubMedGoogle Scholar
  49. Van Praag HJ, Weissen F, Brigode N, Dufour J (1974) Evaluation de la quantité d’azote minéralisée par an, dans un sol de hêtraie ardennaise. Bull Soc R Bot Belg 107:137–145Google Scholar
  50. Vanguelova EI, Hirano Y, Eldhuset TD, Sas-Paszt L, Bakker M, Püttsepp Ü, Brunner I, Lõhmus K, Godbold D (2007) Tree fine root Ca/Al molar ratio-indicator of Al and acidity stress. Plant Biosys 141:460–480Google Scholar
  51. Vanmechelen L, Groenemans R, Van Ranst E (1997) Forest soil condition in Europe. Results of a large-scale soil survey. Technical report. EC, UN/ECE, Ministry of the flemish community, BrusselsGoogle Scholar
  52. Weissen F, Van Praag HJ, Maréchal P, Delecour F, Farcy C (1988) Les causes de la dégradation sanitaire des forêts en Wallonie: le point de la situation. Bull Soc R For Belg 95:57–68Google Scholar
  53. Weissen F, Hambuckers A, Van Praag HJ, Remacle J (1990) A decennial control of N-cycle in the Belgian Ardenne forest ecosystems. Plant Soil 128:59–66CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mathieu Jonard
    • 1
  • Fédéric André
    • 2
  • Pierre Giot
    • 1
  • François Weissen
    • 1
  • Raphaèle Van der Perre
    • 1
  • Quentin Ponette
    • 1
  1. 1.Université catholique de Louvain, Earth and Life Institute, Environmental SciencesLouvain-la-NeuveBelgium
  2. 2.ICG-4 Agrosphere, Institute of Chemistry and Dynamics of the GeosphereJülichGermany

Personalised recommendations