European Journal of Forest Research

, Volume 129, Issue 6, pp 981–992 | Cite as

A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests

  • Jörg Müller
  • Rita Bütler


In contemporary forest management, also of commercial forests, threshold values are widely used for consideration of biodiversity conservation. Here, we present various aspects of dead-wood threshold values. We review published and unpublished dead-wood threshold data from European lowland beech–oak, mixed-montane, and boreo-alpine spruce–pine forests separately to provide managers of European forests with a baseline for management decisions for their specific forest type. Our review of dead-wood threshold data from European forests revealed 36 critical values with ranges of 10–80 m3 ha−1 for boreal and lowland forests and 10–150 m3 ha−1 for mixed-montane forests, with peak values at 20–30 m3 ha−1 for boreal coniferous forests, 30–40 m3 ha−1 for mixed-montane forests, and 30–50 m3 ha−1 for lowland oak–beech forests. We then expand the focus of dead-wood threshold analyses to community composition. We exemplify the two major statistical methods applied in ecological threshold analysis to stimulate forest researchers to analyze more of their own data with a focus on thresholds. Finally, we discuss further directions of dead-wood threshold analysis. We anticipate that further investigations of threshold values will provide a more comprehensive picture of critical ranges for dead wood, which is urgently needed for an ecological and sustainable forestry.


Thresholds Conditional inference tree Maximally selected rank statistic Logistic regression Bootstrapping Variable selection 



We thank Karen A. Brune for linguistic revision of the manuscript and Thibault Lachat, Christophe Bouget and an anonymous reviewer for helpful comments on an earlier version of the manuscript.

Supplementary material

10342_2010_400_MOESM1_ESM.txt (7 kb)
Supplementary material 1 (TXT 6 kb)
10342_2010_400_MOESM2_ESM.xls (21 kb)
Supplementary material 2 (XLS 21 kb)
10342_2010_400_MOESM3_ESM.xls (19 kb)
Supplementary material 3 (XLS 19 kb)


  1. Albrecht L (1991) Die Bedeutung des toten Holzes im Wald. Forstw Cbl 110:106–113CrossRefGoogle Scholar
  2. Ammer U (1991) Konsequenzen aus den Ergebnissen der Totholzforschung für die forstliche Praxis. Eur J Forest Res 110:149–157Google Scholar
  3. Andersen T, Carstensen J, Hernández-García E, Duarte CM (2008) Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24:49–57CrossRefPubMedGoogle Scholar
  4. Angelstam P (2002) Reconciling land management with natural disturbance regimes in European boreal forests. In: Bissonette J, Storch I (eds) Landscape ecology and resource management: managing the match. Island Press, pp, pp 193–226Google Scholar
  5. Angelstam P (2004) Habitat thresholds and effects of forest landscape change on the distribution and abundance of black grouse and capercaillie. Ecol Bull 51:173–188Google Scholar
  6. Angelstam P, Bütler R, Lazdinis M, Mikusinski G, Roberge JM (2003) Habitat thresholds for focal species at multiple scales and forest biodiversity conservation–dead wood as an example. Ann Zool Fennici 40:473–482Google Scholar
  7. Bader P, Jansson S, Jonsson BG (1995) Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol Conserv 72:355–362CrossRefGoogle Scholar
  8. Basset Y, Missa O, Alonso A, Miller SE, Curletti G, De Meyer M, Eardley C, Lewis OT, Mansell MW, Novotny V, Wagner T (2008) Changes in arthropod assemblages along a wide gradient of disturbance in gabon. Conserv Biol 22:1552–1563CrossRefPubMedGoogle Scholar
  9. Bässler C, Müller J (2010) Importance of natural disturbance for recovery of the rare polypore Antrodiella citrinella Niemelä & Ryvarden. Fungal Biol 114:129–133CrossRefGoogle Scholar
  10. Bässler C, Müller J, Dziock F, Brandl R (2010) Microclimate and especially resource availability are more important than macroclimate for assemblages of wood-inhabiting fungi. J Ecol 98:822–832CrossRefGoogle Scholar
  11. Boecklen WJ (1986) Effects of habitat heterogeneity on the species-area relationships of forest birds. J Biogeogr 13:59–68CrossRefGoogle Scholar
  12. Brustel PH (2004) Coléoptères saproxyliques et valeur biologique des forêts francaises. Collect Dossiers For 13:1–297Google Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New YorkGoogle Scholar
  14. Bussler H, Müller J, Dorka V (2005) European natural heritage: the saproxylic beetles in the proposed parcul National Defileul Jiului. Analele ICAS 18:55–71Google Scholar
  15. Bütler R, Angelstam P, Ekelund P, Schlaepfer R (2004) Dead wood threshold values for the three-toed woodpecker presence in boreal and sub-Alpine forest. Biol Conserv 119:305–318CrossRefGoogle Scholar
  16. Christensen M, Hahn K, Mountford EP, Ódor P, Standóvar T, Rozenbergar D, Diaci J, Wijdeven S, Meyer P, Winter S, Vrska T (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. Forest Ecol Manag 210:267–282CrossRefGoogle Scholar
  17. Davies ZG, Tyler C, Stewart GB, Pullin AS (2008) Are current management recommendations for conserving saproxylic invertebrates effective? Biodivers Conserv 17:209–234CrossRefGoogle Scholar
  18. DeMaynadier PG, Hunter ML (1995) The relationship between forest management and amphibian ecology: a review of the North American literature. Environ Rev 3:230–261Google Scholar
  19. Dickson JG, Conner RN, Williamson JH (1983) Snag retention increases bird use of a clear-cut. J Wildl Manage 47:799–804CrossRefGoogle Scholar
  20. Dziock F (2006) Life-history data in bioindication procedures, using the example of hoverflies (Dipter, Syrphidae) in the Elbe floodplain. Int Rev Hydrobiol 91:341–363CrossRefGoogle Scholar
  21. Ekbom B, Schroeder LM, Larsson S (2006) Stand specific occurence of coarse woody debris in a managed boreal forest landscape in central Sweden. Forest Ecol Manag 221:2–12Google Scholar
  22. Erdmann M, Wilke H (1997) Quantitative und qualitative Totholzerfassung in Buchenwirtschaftswäldern. Eur J Forest Res 116:16–28Google Scholar
  23. Flade M, Möller G, Schumacher H, Winter S (2004) Naturschutzstandards für die Bewirtschaftung von Buchenwäldern im nordostdeutschen Tiefland. Der Dauerwald–Zeitschrift für naturgemässe Waldwirtschaft 29:15–28Google Scholar
  24. Fowles AP, Alexander KNA, Key RS (1999) The saproxylic quality Index: evaluating wooded habitats for the conservation of dead-wood Coleoptera. Coleopterist 8:121–141Google Scholar
  25. Frank G (2002) Brutzeitliche Einnischung des Weißrückenspechtes Dendrocopos leucotos im Vergleich zum Buntspecht Dendrocopos major in montanen Mischwäldern der nördlichen Kalkalpen. Vogelwelt 123:225–239Google Scholar
  26. Ganey JL (1999) Snag density and composition of snag populations on two national forests in northern Arizona. Forest Ecol Manag 117:169–178CrossRefGoogle Scholar
  27. Goßner M (2004) Diversität und Struktur arborikoler Arthropodenzönosen fremdländischer und einheimischer Baumarten–Ein Beitrag zur Bewertung des Anbaus von Douglasie (Pseudotsuga menziesii (Mirb.) Franco) und Roteiche (Quercus rubra L.). Neobiota 5, 238Google Scholar
  28. Goßner M (2006) Uralt und unbekannt. LWF aktuell 53:12–13Google Scholar
  29. Grove S (2002a) The influence of forest management history on the integrity of the saproxylic beetle fauna in an Australian lowland tropical rainforest. Biol Conserv 104:149–171CrossRefGoogle Scholar
  30. Grove S (2002b) Tree basal area and dead wood as surrogate indicators of saproxylic insect faunal integrity: a case study from the Australian lowland tropics. Ecol Indic 1:171–188CrossRefGoogle Scholar
  31. Grove S (2002c) Saproxylic insect ecology and the sustainable management of forests. Ann Rev Ecol Syst 33:1–23CrossRefGoogle Scholar
  32. Grove S, Meggs J (2003) Coarse woody debris, biodiversity and management: a review with particular reference to Tasmanian wet eucalypt forests. Aust For 66:258–272Google Scholar
  33. Guénette JS, Villard MA (2004) Do empirical thresholds truly reflect species tolerance to habitat alteration. Ecol Bull 51:163–171Google Scholar
  34. Haase V, Topp W, Zach P (1998) Eichen-Totholz im Wirtschaftswald als Lebensraum für xylobionte Insekten. Zeitschr Ökol Naturschutz 7:137–153Google Scholar
  35. Heilmann-Clausen J, Christensen M (2004) Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. Forest Ecol Manag 201:105–117Google Scholar
  36. Heilmann-Clausen J, Christensen M (2005) Wood-inhabiting macrofungi in Danish beech-forests—conflicting diversity patterns and their implications in a conservation perspective. Biol Conserv 122:633–642CrossRefGoogle Scholar
  37. Hering D, Kail J, Eckert S, Gerhard M, Meyer EI, Mutz M, Reich M, Weiss I (2000) Coarse woody debris quantity and distribution in Central European streams. Int Rev Hydrobiol 85:5–23CrossRefGoogle Scholar
  38. Hilszczanski J, Gibb H, Hjältén J, Atlegrim O, Johansson T, Pettersson RB, Ball JP, Danell K (2005) Parasitoids (Hymenoptera, Ichneumonoidea) of Saproxylic beetles are affected by forest successional stage and dead wood characteristics in boreal spruce forest. Biol Conserv 126:456–464CrossRefGoogle Scholar
  39. Hothorn T, Zeileis A (2008) Generalized maximally selected statistics. Biometrics 64:1263–1269CrossRefPubMedGoogle Scholar
  40. Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15:651–674CrossRefGoogle Scholar
  41. Hövemeyer K, Schauermann J (2003) Succession of diptera on dead beech: a 10-year study. Pedobiologia 47:61–75CrossRefGoogle Scholar
  42. Huggett AJ (2005) The concept and utility of ‘ecological thresholds’ in biodiversity conservation. Biol Conserv 124:301–310CrossRefGoogle Scholar
  43. Jonsell M, Schröder M, Weslien J (2005) Saproxylic beetles and high stumps of spruce—fungal flora important for determining the species composition. Scand J For Res 20:54–63CrossRefGoogle Scholar
  44. Jönsson MT, Edman M, Jonsson BG (2008) Colonization and extinction patterns of wood-decaying fungi in a boreal old-growth Picea abies forest. J Ecol 96:1065–1075CrossRefGoogle Scholar
  45. Junninen K, Similä M, Kouki J, Kotiranta H (2006) Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia. Ecography 29:75–83CrossRefGoogle Scholar
  46. Kappes H (2005) The influence of coarse woody debris on the gastropod community of a managed calcareous beech forest in western Europe. J Molluscan Stud 71:85–91CrossRefGoogle Scholar
  47. Kappes H, Jabin M, Kulfan J, Zach P, Topp W (2009) Spatial patterns of litter-dwelling taxa in relation to the amount of coarse woody debris in European temperate deciduous forests. Forest Ecol Manag 257:1255–1260CrossRefGoogle Scholar
  48. Kirby KJ, Reid CM, Thomas RC, Goldsmith FB (1998) Preliminary estimates of fallen dead wood and standing dead trees in managed and unmanaged forests in Britain. J Appl Ecol 35:148–155CrossRefGoogle Scholar
  49. Kratzer R (2008) Totholzschwellenwertanalyse für die Habitate des Dreizehenspechts (Picoides tridactylus alpinus) im Schwarzwald. Diploma, Fakultät für Forst- und Umweltwissenschaften. University Freiburg. Freiburg. 83ppGoogle Scholar
  50. Lindenmayer DB, Luck G (2005) Synthesis: thresholds in conservation and management. Biol Conserv 124:351–354CrossRefGoogle Scholar
  51. Loser E, Bebié N, Niggli-Luder S, Bürkler F (2005) Wie naturnah ist ein Wald. Schweiz. Z Forstwes 156:13–21CrossRefGoogle Scholar
  52. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  53. Martikainen P, Siitonen J, Kaila L, Punttila P, Rauh J (1999) Bark beetles (Coleoptera, Scolytidae) and associated beetle species in mature managed and old-growth boreal forests in southern Finland. Forest Ecol Manag 116:1–3CrossRefGoogle Scholar
  54. Martikainen P, Siitonen J, Punttila P, Kaila L, Rauh J (2000) Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biol Conserv 94:199–209CrossRefGoogle Scholar
  55. Martin K, Eadie JM (1999) Nest webs: a community-wide approach to the management and conservation of cavity-nesting forest birds. Forest Ecol Manag 115:243–257CrossRefGoogle Scholar
  56. May R (1973) Stability and complexity in model ecosystems. Princeton University Press, USAGoogle Scholar
  57. Möller G (2005) Habitatstrukturen holzbewohnender Insekten und Pilze. LÖBF-Mitteilungen 3:30–35Google Scholar
  58. Moning C, Müller J (2008) Environmental key factors and their thresholds for the avifauna of temperate montane forests. Forest Ecol Manag 256:1198–1208CrossRefGoogle Scholar
  59. Moning C, Bussler H, Müller J (2009) Ökologische Schlüsselwerte in Bergmischwäldern als Grundlage für eine nachhaltige Forstwirtschaft. Wissenschaftliche Reihe des Nationalpark Bayerischer Wald 19:1–102Google Scholar
  60. Müller J (2004) Vögel als Inspektionsbeamte in Eichenwäldern. LWF Wissen 46:22–28Google Scholar
  61. Müller J (2005) Waldstrukturen als Steuergröße für Artengemeinschaften in kollinen bis submontanen Buchenwäldern. Dissertation, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt. Technische Universität. München, http// 197ppGoogle Scholar
  62. Müller J, Brandl R (2009) Assessing biodiversity by remote sensing and ground survey in montainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46:897–905CrossRefGoogle Scholar
  63. Müller J, Bussler H (2008) Key factors and critical thresholds at stand scale for saproxylic beetles in a beech dominated forest, southern Germany. Rev Écol (Terre Vie) 63:73–82Google Scholar
  64. Müller J, Goßner MM (2010) Three-dimensional partitioning of diversity informs state-wide strategies for the conservation of saproxylic beetles. Biol Conserv 143:625–633CrossRefGoogle Scholar
  65. Müller J, Hothorn T (2004) Maximally selected two-sample statistics as a new tool for the identification and assessment of habitat factors with an application to breeding-bird communities in oak forests. Eur J Forest Res 123:219–228CrossRefGoogle Scholar
  66. Müller J, Bußler H, Bense U, Brustel H, Flechtner G, Fowles A, Kahlen M, Möller G, Mühle H, Schmidl J, Zabransky P (2005a) Urwald relict species—Saproxylic beetles indicating structural qualities and habitat tradition. Waldökologie Online 2:106–113Google Scholar
  67. Müller J, Strätz C, Hothorn T (2005b) Habitat factors for land snails in acid beech forests with a special focus on coarse woody debris. Eur J Forest Res 124:233–242CrossRefGoogle Scholar
  68. Müller J, Bußler H, Utschick H (2007a) Wie viel Totholz braucht der Wald? Ein wissenschaftsbasiertes Konzept gegen den Artenschwund der Totholzzönosen. NUL 39:165–170Google Scholar
  69. Müller J, Engel H, Blaschke M (2007b) Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur J Forest Res 126:513–527CrossRefGoogle Scholar
  70. Müller J, Bussler H, Kneib T (2008) Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany. Eur J Insect Conserv 12:107–124CrossRefGoogle Scholar
  71. Muradin R (2001) Ecological thresholds: a survey. Ecol Econ 38:7–24CrossRefGoogle Scholar
  72. Murthy SK (1998) Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min Knowl Disc 2:345–389CrossRefGoogle Scholar
  73. Neft R (2006) Biotopbaum- und Totholzkonzept des Unternehmens Bayerische Staatsforsten (BaySF). LWF aktuell 55:28–29Google Scholar
  74. Ódor P, Heilmann-Clausen J, Christensen M, Aude E, Dort v KW, Piltaver A, Siller I, Veerkamp MT, Standovár T, Hees v AFM, Kosec J, Matocec N, Kraigher H, Grebenc T (2006) Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol Conserv 131:58–71CrossRefGoogle Scholar
  75. Okland B, Bakke A, Hagvar S, Kvamme T (1996) What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodivers Conserv 5:75–100CrossRefGoogle Scholar
  76. Pechacek P, D’Oleire-Oltmanns W (2004) Habitat use of the three-toed woodpecker in central Europe during the breeding period. Biol Conserv 116:333–341CrossRefGoogle Scholar
  77. Penttilä R, Siitonen J, Kuusinen M (2004) Polypore diversity in managed and old-growth boreal Picea abies forests in southern Finland. Biol Conserv 117:271–283CrossRefGoogle Scholar
  78. Penttilä R, Lindgren M, Miettinen O, Rita H, Hanski I (2006) Consequences of forest fragmentation for polyporous fungi at two spatial scales. Oikos 114:225–240CrossRefGoogle Scholar
  79. Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, CambridgeGoogle Scholar
  80. R Core Development Team (2008) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing 3-900051-07-0Google Scholar
  81. Ranius T (2002) Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol Conserv 103:85–91CrossRefGoogle Scholar
  82. Ranius T (2006) Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul Ecol 48:177–188CrossRefGoogle Scholar
  83. Ranius T, Fahrig L (2006) Targets for maintenance of dead wood for biodiversity conservation based on extinction thresholds. Scand J For Res 21:201–208CrossRefGoogle Scholar
  84. Reemer M (2005) Saproxylic hoverflies benefit by modern forest management (Diptera: Syrphidae). J Insect Conserv 9:49–59CrossRefGoogle Scholar
  85. Roberge J-M, Angelstam P, Villard MA (2008) Specialised woodpeckers and naturalness in hemiboreal forests—Deriving quantitative targets for conservation planning. Biol Conserv 141:997–1012CrossRefGoogle Scholar
  86. Roff DA (2006) Introduction to computer-intensive methods of data analysis in biology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  87. Schiegg K (2000) Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography 23:579–587CrossRefGoogle Scholar
  88. Schlaepfer R, Bütler R (2004) Critères et indicateurs de la gestion des ressources forestières: Prise en compte de la complexité et de l’approche écosystémique. Revue Forestière Française 56:431–444Google Scholar
  89. Schmidt O (2006) Totes Holz voller Leben. LWF aktuell 53:1Google Scholar
  90. Schulz U, Ammer U (1997) Aufgeklappte Wurzelteller und ihr Beitrag zur Insekten-Diversität des Waldes. Mitt Dtsch Ges Allg Angew Ent 11:677–682Google Scholar
  91. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41Google Scholar
  92. Siitonen J, Saaristo L (2000) Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biol Conserv 94:211–220CrossRefGoogle Scholar
  93. Siitonen J, Martikainen P, Punttila P, Rauh J (2000) Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. Forest Ecol Manag 128:211–225CrossRefGoogle Scholar
  94. Similä M, Kouki J, Martikainen P (2003) Saproxylic beetles in managed and seminatural scots pine forests: quality of dead wood matters. Forest Ecol Manag 174:365–381CrossRefGoogle Scholar
  95. Speight MCD (1989) Saproxylic invertebrates and their conservation. Council Eur Nat Environ Ser 42:1–79Google Scholar
  96. Stokland JN, Tomter SM, Söderberg U (2004) Development of dead wood indicators for biodiversity monitoring: experiences from Scandinavia. In: Marchetti M (ed) Proceedings of the monitoring and indicators of forest biodiversity in Europe—from ideas to operationality, Florence, 207–226ppGoogle Scholar
  97. Sullivan TP, Sullivan DS (2001) Influence of variable retention harvest on forest ecosystems. II Diversity and population dynamics of small mammals. J Appl Ecol 38:1234–1252CrossRefGoogle Scholar
  98. ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for Canonical community ordination (version 4). Mirocomputer Power, Ithaca, New YorkGoogle Scholar
  99. Tilman D, May RM, Lehman C, Nowak M (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  100. Tremblay JA, Ibarzabal C, Dussault C, Savard JP (2009) Habitat requirements of breeding black-backed woodpecker in unburned boreal forests. Avian Conserv Ecol 4(1):2, [online] ULR: Google Scholar
  101. Ulikzka H, Angelstam P (2000) Assessing conservation values of forest stands based on specialised lichens and birds. Biol Conserv 95:343–351CrossRefGoogle Scholar
  102. Utschick H (1991) Beziehungen zwischen Totholzreichtum und Vogelwelt in Wirtschaftswäldern. Eur J Forest Res 110:135–148Google Scholar
  103. Villard M-A (2009) Designing studies to develop conservation targets: a review of the challenges. In: Villard M-A, Jonsson BG (eds) Setting conservation targets for managed forest Landscapes. Cons Biol 16, 30–49Google Scholar
  104. Vodka S, Konvicka M, Cizek L (2009) Habitat preferences of oak-feeding xylophagous beetles in a temperate woodland: implications for forest history and management. J Insect Conserv doi: 10.1007/s10841-008-9202-1
  105. Winter S, Flade M, Schumacher H, Kerstan E, Möller G (2005) The importance of near natural stand structures for the biocoenosis of lowland beech forests. For Snow Lansc Res 79:127–144Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.National Park Bavarian ForestGrafenauGermany
  2. 2.WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchLausanneSwitzerland
  3. 3.Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Ecological Systems, ECOSLausanneSwitzerland

Personalised recommendations