European Journal of Forest Research

, Volume 129, Issue 4, pp 659–668 | Cite as

Modelling dead wood islands in European beech forests: how much and how reliably would they provide dead wood?

  • Oliver Jakoby
  • Christine Rademacher
  • Volker Grimm
Original Paper


Dead wood is an important element of forests both for biodiversity and ecosystem functions. Due to intensive silviculture, however, dead wood usually is strongly underrepresented in European forests. Forest reserves cannot fully compensate for this because they comprise only a small proportion of forested areas and are often isolated. Retaining a certain number of dead trees in managed forests is important, but may cause safety problems for lumbermen and visitors and still does not necessarily lead to an amount and incidence (i.e., probability of occurrence) of dead wood that might be required for many species and certain ecosystem functions. Our studies concentrate on a third and complimentary dead wood management strategy: dead wood islands, i.e. small unmanaged islands distributed throughout managed forests. As an example, we focus on European beech forests (Fagus sylvatica). An important question related to this strategy is: how do amount, quality, and incidence of dead wood depend on the island’s size? To provide an answer, we use the spatially explicit, rule-based simulation model BEFORE-CWD that was developed to analyse dead wood dynamics in natural beech forests. This model and its predecessor, BEFORE, are well-verified and validated. They reproduce a suite of observed patterns and generate valid secondary and independent predictions. We found that islands that are too small, i.e. smaller than 0.33 and 0.08 ha for standing and lying dead wood, respectively, can fail to provide dead wood for several decades. The shape of the islands has only a minor effect. Extreme storm events temporarily increase and then decrease the amount of standing dead wood. In terms of the amount and incidence of dead wood, it makes no difference if one big or several small islands are set aside from management, unless the islands are not too small. We conclude that even relatively small unmanaged islands within managed forests can reliably provide dead wood and therefore should be considered as a management option. Our results can be used, for example by using metapopulation models of species of interest, to develop management plans for creating networks of dead wood islands.


Forest management Silviculture Coarse woody debris Rule-based forest model Individual-based model Conservation 



We would like to thank Susanne Winter and Volker Grundmann for helpful discussions about dead wood in beech forests and two anonymous reviewers for valuable comments.

Supplementary material

10342_2010_366_MOESM1_ESM.doc (146 kb)
(DOC 146 kb)


  1. Ammer U (1991) Konsequenzen aus den Ergebnissen der Totholzforschung für die forstliche Praxis. Forstw Cbl 110:149–157. doi: 10.1007/BF02741249 CrossRefGoogle Scholar
  2. Angelstam P, Bütler R, Lazdinis M, Mikusinski M, Roberge JM (2003) Habitat thresholds for focal species at multiple scale and forest biodiversity conservation–dead wood as an example. Ann Zool Fenn 40(6):473–482Google Scholar
  3. Aulén G (1988) Ecology and Distribution History of the White-backed Woodpecker Dendrocopos leucotos in Sweden. Swedish University of Agricultural Sciences, Department of Wildlife Ecology, Dissertation, Report 14Google Scholar
  4. Burschel P (1992) Totholz und Forstwirtschaft. AFZ 21:1143–1146Google Scholar
  5. Bütler R, Schlappfer R (2004) Wie viel Totholz braucht der Wald? Schweiz Z Forstwes 155:31–37. doi: 10.3188/szf.2004.0031 CrossRefGoogle Scholar
  6. Bütler R, Angelstam P, Ekel P, Schlaepfer R (2004) Dead wood threshold values for the three-toed woodpecker presence in boreal and sub-Alpine forest. Biol Conserv 119:305–318. doi: 10.1016/j.biocon.2003.11.014 CrossRefGoogle Scholar
  7. Christensen M, Hahn K, Mountford EP, Odor P, Standovar T, Rozenbergar D, Diaci J, Wijdeven S, Meyer P, Winter S, Vrska T (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. For Ecol Manage 210:267–282. doi: 10.1016/j.foreco.2005.02.032 CrossRefGoogle Scholar
  8. Detsch R, Kölbel M, Schulz U (1994) Totholz–vielseitiger Lebensraum in naturnahen Wäldern. AFZ 11:586–591Google Scholar
  9. Green P, Peterken GF (1997) Variation in the amount of deadwood in the woodlands of the Lower Wye Valley, UK in relation to the intensity of management. For Ecol Manage 98:229–238. doi: 10.1016/S0378-1127(97)00106-0 CrossRefGoogle Scholar
  10. Grimm V, Frank K, Jeltsch F, Brandl R, Uchmanski J, Wissel C (1996) Pattern-oriented modelling in population ecology. Sci Total Environ 183(1–2):151–166. doi: 10.1016/0048-9697(95)04966-5 Google Scholar
  11. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke H-H, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991. doi: 10.1126/science.1116681 CrossRefPubMedGoogle Scholar
  12. Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz S, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pe'er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198(1–2):115–126CrossRefGoogle Scholar
  13. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SW, Lattin LD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromak K, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302. doi: 10.1016/S0065-2504(08)60121-X CrossRefGoogle Scholar
  14. Hartfiel J (1998) Auswirkung naturnaher Waldwirtschaft auf die Arbeitssicherheit. FTI 1–2:4–6Google Scholar
  15. Jonsson BG (2000) Availability of coarse woody debris in a boreal old-growth Picea abies forest. J Veg Sci 11:51–56. doi: 10.2307/3236775 CrossRefGoogle Scholar
  16. Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood–lessons for dead wood management. Silva Fenn 2:289–309Google Scholar
  17. Korpel’ S (1995) Die Urwälder der Westkarparten. Gustav Fischer Verlag, StuttgartGoogle Scholar
  18. Korpel’ S (1997) Erkenntnisse über Strukturdynamik und Entwicklungsprozesse der Urwälder in der Slovakei und ihre Anwendung in der naturnahen Waldwirtschaft. Beitr Forstwirtsch u Landschaftsökologie 31:151–155Google Scholar
  19. Kramer H (1981) Grundlagen der Forstlichen Ertragskunde. Selbstverlag, GöttingenGoogle Scholar
  20. Lambeck RJ (1997) Focal species—a multispecies umbrella for nature conservation. Conserv Biol 11:849–856CrossRefGoogle Scholar
  21. Leibundgut H (1993) Europäische Urwälder: Wegweiser zur naturnahen Waldwirtschaft. Verlag Paul Haupt, Bern und StuttgartGoogle Scholar
  22. Lombardi F, Lasserre B, Tognetti R, Marchetti M (2008) Deadwood in relation to stand management and forest type in Central Apennines (Molise, Italy). Ecosystems 11:882–894CrossRefGoogle Scholar
  23. MCPFE (2003) Improved Pan-European indicators for sustainable forest management as adopted by the MCPFE expert level meeting 7–8 October 2002. Vienna, Austria, p 6Google Scholar
  24. Meyer P (1999) Bestimmung der Waldentwicklungsphasen und der Texturdiversität in Naturwäldern. Allg Forst-u J Ztg 170(10–11):203–211Google Scholar
  25. Müller J, Strätz C, Hothorn T (2005) Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. Eur J Forest Res 124:233–242CrossRefGoogle Scholar
  26. Müller-Using S, Bartsch N (2007) Totholz im Elementhaushalt eines Buchenbestandes. Forstarchiv 78:12–23Google Scholar
  27. Neuert C (1999) Die Dynamik räumlicher Strukturen in naturnahen Buchenwäldern Mitteleuropas. UFZ Berichte 20/1999Google Scholar
  28. Neuert C, Rademacher C, Grundmann V, Wissel C, Grimm V (2001) Struktur und Dynamik von Buchenurwäldern: Ergebnisse des regelbasierten Modells BEFORE. Natursch Landschaftspl 33:173–183Google Scholar
  29. Peterken GF (1996) Natural woodlands—ecology and conservation in northern temperate regions. Cambridge University Press, CambridgeGoogle Scholar
  30. Rademacher C, Winter S (2003) Totholz im Buchen-Urwald: Generische Vorhersagen des Simulationsmodelles BEFORE-CWD zur Menge, räumlichen Verteilung und Verfügbarkeit. Forstwiss Cbl 122:337–357CrossRefGoogle Scholar
  31. Rademacher C, Neuert C, Grundmann V, Wissel C, Grimm V (2001) Was charakterisiert Buchenurwälder? Untersuchungen der Altersstruktur des Kronendachs und der räumlichen Verteilung der Baumriesen mit Hilfe des Simulationsmodells BEFORE. Forstwissenschaftliches Centralblatt 120:288–302CrossRefGoogle Scholar
  32. Rademacher C, Neuert C, Grundmann V, Wissel C, Grimm V (2004) Reconstructing spatiotemporal dynamics of Central European natural beech forests: the rule-based forest model BEFORE. For Ecol Manag 194:349–468CrossRefGoogle Scholar
  33. Ranius T (2007) Extinction risks in metapopulations of a beetle inhabiting hollow trees predicted from time series. Ecography 30:716–726CrossRefGoogle Scholar
  34. Ranius T, Kindvall O (2004) Modelling the amount of coarse woody debris produced by the new biodiversity-oriented silvicultural practices in Sweden. Biol Conserv 119:51–59CrossRefGoogle Scholar
  35. Ranius T, Kindvall O, Kruys N, Jonsson BG (2004) Modelling dead wood in Norway spruce stands subject to different management regimes. For Ecol Manag 182:13–29CrossRefGoogle Scholar
  36. Schaber-Schoor G (2008) Wieviel Totholz braucht der Wald–Ergebnisse einer Literaturrecherche als Grundlage für ein Alt-, Totholz- und Habitatbaumkonzept. FVA-Einblick 2:5–8Google Scholar
  37. Scherzinger W (1996) Naturschutz im Wald: Qualitätsziele einer dynamischen Waldentwicklung. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  38. Schiegg K (2000) Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography 23:579–587CrossRefGoogle Scholar
  39. Schiegg K, Suter W (2002) Lebensraum Totholz. Merkblatt für die Praxis 33. WSLGoogle Scholar
  40. Schroeder LM, Ranius T, Ekbom B, Larsson S (2007) Spatial occurrence of a habitat-tracking saproxylic beetle inhabiting a managed forest landscape. Ecol Appl 17:900–909CrossRefPubMedGoogle Scholar
  41. Shaffer M (1987) Minimum viable populations: coping with uncertainty. In: Soule ME (ed) Viable populations for conservation, pages 405–410. Cambridge University Press, CambridgeGoogle Scholar
  42. Stein J (1981) Biotopschutzprogramm Altholzinseln im hessischen Wald. Veröffentlichungen für Naturschutz und Landschaftspflege in Bad.-Württ. Karlsruhe, Beiheft 20:91–110Google Scholar
  43. Stelter C, Reich M, Grimm V, Wissel C (1997) Modelling persistence in dynamic landscapes: lessons from a metapopulation of the grasshopper Bryodema tuberculata. J Anim Ecol 66:508–518CrossRefGoogle Scholar
  44. von Oheimb G, Westphal C, Tempel H, Hardtle W (2005) Structural pattern of a near-natural beech forest (Fagus sylvatica) (Serrahn, North-east Germany). For Ecol Manag 212:253–263CrossRefGoogle Scholar
  45. Weiss J (1984) Ein Netz von Buchen-Altholzinseln als Beispiel eines Biotop-Verbundsystems. Mitteilungen der LOELF 9:38–43Google Scholar
  46. Wiegand T, Jeltsch F, Hanski I, Grimm V (2003) Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application. Oikos 100:209–222CrossRefGoogle Scholar
  47. Wilson A, Vickery J, Pendlebury C (2007) Agri-environment schemes as a tool for reversing declining populations of grassland waders: mixed benefits from environmentally sensitive areas in England. Biol Conserv 136(1):128–135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Oliver Jakoby
    • 1
  • Christine Rademacher
    • 2
  • Volker Grimm
    • 1
  1. 1.Department of Ecological ModellingHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  2. 2.Fakultät AllgemeinwissenschaftenGeorg-Simon-Ohm-Hochschule NuernbergNuernbergGermany

Personalised recommendations