European Journal of Forest Research

, Volume 129, Issue 4, pp 645–658 | Cite as

Transferring Atlantic maritime pine improved material to a region with marked Mediterranean influence in inland NW Spain: a likelihood-based approach on spatially adjusted field data

Original Paper

Abstract

The inland region of Galicia (NW Spain) marks the boundary between the Atlantic climate of the coastal area and the typical Mediterranean climate of central Spain. Compared to the Atlantic coast, climate in this area has a pronounced summer drought, lower annual precipitation, and higher annual thermal oscillation. Despite the high productivity and ecological importance of maritime pine in inland Galicia, local forest reproductive material (FRM) of high genetic quality is not available for this area. Seed sources originating elsewhere and of unknown adaptation to this area are commonly used for reforestation. With the aim of finding new sources of FRM for this region and exploiting the genetic gains of existing breeding programmes, we analysed the performance in field conditions of improved families of the Coastal Galicia (CG) and Western Australia (WA) breeding programmes. Growth, stem characteristics and branch habit were evaluated in five progeny trials established following a coastal-to-inland gradient. Likelihood-based analyses were used to estimate genetic correlations between environments and to test statistically for causes and patterns of genotype × environment interaction. Because of the strong non-random spatial structures and heterogeneity of residual variances, the analyses were carried out using heterogeneous residual variance mixed models on spatially adjusted data. The results indicated that there is not sufficient evidence to subdivide Galicia into the two current deployment areas. Interaction patterns do not reveal significant differences between zones, and crossover interactions for height growth are present both between and within areas. On the inland sites, the Atlantic improved materials clearly outperformed unimproved seedlots tested in adjacent provenance trials, suggesting the feasibility of using both the CG and WA breeding materials as sources of FRM for reforestation in inland Galicia. Of the two, the WA material showed excellent results for all traits. The inclusion of this material into the Galician maritime pine breeding population should be strongly considered.

Keywords

Pinus pinaster Progeny trial Iterative spatial analysis Genotype × environment interaction Spatial autocorrelation REML estimation Genetic correlation Variance–covariance matrix Heterogeneous variance models 

Supplementary material

10342_2010_365_MOESM1_ESM.doc (522 kb)
Supplementary material 1 (DOC 523 kb)

References

  1. Alazard P (1988) Intérêt de la race Corse dans le programme d’amélioration génétique du pin maritime. Ann Rech Sylv, AFOCELGoogle Scholar
  2. Alía R, Gil L, Pardos JA (1995) Performance of 43 Pinus pinaster Ait. provenances on 5 locations in central Spain. Silvae Genet 44:75–81Google Scholar
  3. Alía R, Martin S, De Miguel J, Galera R, Agúndez D, Gordo J, Catalán G, Gil L (1996) Las regiones de procedencia de Pinus pinaster Ait. OA de Parques Nacionales. DGCONA, MadridGoogle Scholar
  4. Alía R, Moro J, Denis JB (1997) Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can J For Res 27:1548–1559CrossRefGoogle Scholar
  5. Alía R, Moro J, Denis J-B (2001) Ensayos de procedencias de Pinus pinaster Ait. en el centro de España: resultados a la edad de 32 años. Inv. Agraria: Sist Rec For 10:333–354Google Scholar
  6. Álvarez-Gonzalez JG, Ruiz-Gonzalez AD, Rodriguez-Soalleiro R, Barrio-Anta M (2005) Ecoregional site index models for Pinus pinaster in Galicia (NW Spain). Ann For Sci 62:115–127CrossRefGoogle Scholar
  7. Barrio-Anta M, Mn Balboa-Murias, Castedo-Dorado F, Diéguez-Aranda U, Alvarez-González JG (2006) An ecoregional model for estimating volume, biomass and carbon pools in maritime pine stands in Galicia (NW Spain). Forest Ecol Manage 223:24–34CrossRefGoogle Scholar
  8. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen RP, Stevens MH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefPubMedGoogle Scholar
  9. Butcher TB (2007) Achievements in forest tree genetic improvement in Australia and New Zealand 7: Maritime pine and Brutian pine tree improvement programs in Western Australia. Aust For 70:141–151Google Scholar
  10. Butcher TB, Chandler AL (2007) Maritime pine for dry-land Western Australia. Joint Australian Forest Genetics and IUFRO Southern Pines working group (2.02.20) Conference. 11–14 April 2007, Hobart Australia. (Proceedings in press as CD and at http://www.crcforestry.com.au/)
  11. Butcher TB, Hopkins ER (1993) Realised gains from breeding Pinus pinaster. For Ecol Manage 58:211–231CrossRefGoogle Scholar
  12. Chambel MR (2006) Variabilidad adaptativa y plasticidad fenotípica en procedencias de pinos ibéricos. Thesis. Departamento de Silvopascicultura. Universidad Politécnica de MadridGoogle Scholar
  13. Climent J, Alonso J, Gil L (2008) Root restriction hindered early allometric differentiation between seedlings of two provenances of Canary Island Pine. Silvae Genet 57:187–193Google Scholar
  14. Costa-Silva J, Dutkowski GW, Gilmour AR (2001) Analysis of early tree height in forest genetic trials is enhanced by including a spatially correlated residual. Can J For Res 31:1887–1893CrossRefGoogle Scholar
  15. Crossa J, Yang R-C, Cornelius PL (2004) Studying crossover genotype x environment interaction using linear-bilinear models and mixed models. J Agric Biol Environ Stat 9:362–380CrossRefGoogle Scholar
  16. de la Mata R, Zas R (2009) Performance of maritime pine Spanish Mediterranean provenances at young ages in a transitional region between Atlantic and Mediterranean climates in NW Spain. Silvae Genet 59:8–17Google Scholar
  17. Dutkowski GW, Costa-e-Silva J, Gilmour AR, Wallendorf H, Aguiar A (2006) Spatial analysis enhances modelling of a wide variety of traits in forest genetic trials. Can J Forest Res 36:1851–1870CrossRefGoogle Scholar
  18. Fry JD (2004) Estimation of genetic variances and covariances by restricted maximum likelihood using PROC MIXED. In: Saxton AM (ed) Genetic analysis of complex traits using SAS. SAS Institute, CaryGoogle Scholar
  19. Fu YB, Yanchuk AD, Namkoong G (1999) Spatial patterns of tree height variations in a series of Douglas-fir progeny trials: implications for genetic testing. Can J For Res 29:714–723CrossRefGoogle Scholar
  20. Galera R, Martin S, Alía R, Gordo J, Aguado AM, Notivol E (1997) Manual de selección de masas productoras de semillas. Evaluación de caracteres. Ministerio de Agricultura, Pesca y Alimentación. INIA, MadridGoogle Scholar
  21. García JM, De-Miguel J, Alía R, Iglesias S (2001) Regiones de Identificación y Utilización de material forestal de reproducción. Ministerio de Medio Ambiente, Serie Cartográfica, MadridGoogle Scholar
  22. Harfouche A, Kremer A (2000) Provenance hybridization in a diallel mating scheme of maritime pine (Pinus pinaster). I. Means and variance components. Can J Forest Res 30:1–9CrossRefGoogle Scholar
  23. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS system for mixed models, 2nd edn. SAS Institute, CaryGoogle Scholar
  24. Mariette S, Chagne D, Lezier C, Pastuszka P, Raffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479CrossRefPubMedGoogle Scholar
  25. Martíns P, Sampedro L, Moreira X, Zas R (2009) Nutritional status and genetic variation in the response to nutrient availability in Pinus pinaster. A multisite field study in Northwest Spain. For Ecol Manage 258:1429–1436CrossRefGoogle Scholar
  26. Molina F (1965) Comportamiento racial del Pinus pinaster en el noroeste de España. An IFIE 2:221–238Google Scholar
  27. Perry DH, Hopkins ER (1967) Importation of breeding material of Pinus pinaster Ait. from Portugal. Bulletin 75, Forests Department, Western AustraliaGoogle Scholar
  28. Petit RJ, Bahrman N, Baradat P (1995) Comparison of genetic differentiation in Maritime Pine (Pinus pinaster Ait.) estimated using isozyme, total protein and terpenic loci. Heredity 75:382–389CrossRefGoogle Scholar
  29. Qiao CG, Basford KE, DeLacy IH, Cooper M (2000) Evaluation of experimental designs and spatial analyses in wheat breeding trials. Theor Appl Genet 100:9–16CrossRefGoogle Scholar
  30. Saenz-Romero C, Nordheim EV, Guries RP, Crump PM (2001) A case study of a provenance/progeny test using trend analysis with correlated errors and SAS PROC MIXED. Silvae Genet 50:127–135Google Scholar
  31. Sampedro L, Moreira X, Martíns P, Zas R (2009) Growth and nutritional response of Pinus pinaster after a large pine weevil (Hylobius abietis) attack. Trees Struct Funct 23:1189–1197Google Scholar
  32. Sanz F, Latour S, Neves M, Bastet E, Pischedda D, Piñeiro G, Gauthier T, Lesbats J, Plantier C, Marques A, Lanvin JD, Santos JA, Touza M, Pedras F, Parrot J, Reuling D, Faria C (2006) Aplicacions industriais da madeira de piñeiro pinaster. Rodi Artes Gráficas S.L, OurenseGoogle Scholar
  33. SAS Institute (1999) SAS/STAT user’s guide, Version 8. SAS Institute Inc, CaryGoogle Scholar
  34. Sierra de Grado R, Pando V, Martinez-Xurimendi P, Penalvo A, Bascones E, Moulia B (2008) Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness. Tree Physiol 28:835–846PubMedGoogle Scholar
  35. Webster R, Oliver MA (1990) Statistical methods in soil and land resource survey. Oxford University Press, OxfordGoogle Scholar
  36. Yang R-C (2002) Likelihood-based analysis of genotype-environment interactions. Crop Sci 42:1434–1440CrossRefGoogle Scholar
  37. Yang R-C (2007) Mixed-model analysis of crossover genotype-environment interactions. Crop Sci 47:1051–1062CrossRefGoogle Scholar
  38. Zas R (2006) Iterative kriging for removing spatial autocorrelation in analysis of forest genetic trials. Tree Genet Genom 2:177–186CrossRefGoogle Scholar
  39. Zas R, Fernández-López J (2005) Juvenile genetic parameters and genotypic stability of Pinus pinaster Ait. open pollinated families under different water and nutrient regimes. Forest Sci 51:165–174Google Scholar
  40. Zas R, Merlo E (2008) El programa de mejora de Pinus pinaster en Galicia. Boletin CIDEU. URL: http://www.uhu.es/cideu/Boletin/TemasBoletines.htm
  41. Zas R, Merlo E, Fernández-López J (2004) Genotype × environment interaction in Maritime pine families in Galicia, Northwest Spain. Silvae Genet 53:175–182Google Scholar
  42. Zas R, Solla A, Sampedro L (2007) Variography and kriging allow screening Pinus pinaster resistant to Armillaria ostoyae in field conditions. Forestry 80:201–209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Centro de Investigación Forestal de LourizánPontevedraSpain
  2. 2.Misión Biológica de Galicia, CSICPontevedraSpain

Personalised recommendations