Advertisement

European Journal of Forest Research

, Volume 129, Issue 4, pp 635–643 | Cite as

Establishment of cryopreserved gene banks of European chestnut and cork oak

  • Nieves Vidal
  • Ana M. Vieitez
  • M. Rosario Fernández
  • Beatriz Cuenca
  • Antonio Ballester
Original Paper

Abstract

Cryopreservation of selected genotypes of European chestnut and cork oak was carried out in two laboratories in a project involving conservation of field collections. Plant material was selected on the basis of disease resistance (chestnut), growth habit, phytosanitary performance and cork quality (cork oak). The cryopreservation technique comprised of vitrification of shoot apices isolated from in vitro stock shoot cultures (chestnut) and somatic embryos (cork oak). Forty-three out of 46 chestnut genotypes assayed survived the freezing process, but only 63% recovered their capacity to produce new shoots. After completion of multiplication and rooting steps, the surviving shoots produced plants that were morphologically identical to those derived from non-supercooled material. All 51 cork oak genotypes withstood freezing and were able to produce new somatic embryos through a process of secondary embryogenesis. Multiplication and germination of the recovered embryos enabled production of plants that were morphologically identical to those derived from non-supercooled material. In light of the results obtained, long-term cryopreservation of these species is feasible, thereby ensuring conservation of valuable genotypes during field evaluation.

Keywords

Castanea sativa Cryopreservation Forest tree species Liquid nitrogen Quercus suber Vitrification 

Notes

Acknowledgments

This study was partially supported by projects CIT-010000-2007-5 (Ministerio de Educación y Ciencia, Spain) and PGDIT07MRU003E (Xunta de Galicia, Spain). Thanks are also given to Dr. Mariano Toribio (IMIDRA, Madrid, Spain) and Dra. Mª Angeles Bueno (INIA, Madrid, Spain) for supplying the embryogenic lines corresponding respectively to the mature and juvenile genotypes used in the study.

References

  1. Alves A, Correia A, Luque J, Phillips A (2004) Botryosphaeria corticola. sp.nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia 93:598–613CrossRefGoogle Scholar
  2. Bounous G (2005) The chestnut: a multipurpose resource for the new millenium. Acta Hortic 693:33–40Google Scholar
  3. Bueno MA, Astorga R, Manzanera JA (1992) Plant regeneration through somatic embryogenesis in Quercus suber L. Physiol Plant 85:30–34CrossRefGoogle Scholar
  4. Conedera M, Manetti MC, Giudici F, Amorini E (2004) Distribution and economic potential of the sweet chestnut (Castanea sativa Mill.) in Europe. Ecol Medit 30:47–61Google Scholar
  5. Corredoira E, San-José MC, Ballester A, Vieitez AM (2004) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters 25:33–42PubMedGoogle Scholar
  6. Corredoira E, Ballester A, Vieitez AM (2006) Somatic embryogenesis in chestnut. In: Mujib S, Samaj J (eds) Somatic embryogenesis, plant cell monographs (2). Springer, Heidelberg, pp 177–199Google Scholar
  7. Corredoira E, San-José MC, Vieitez AM, Ballester A (2007) Improving genetic transformation of European chestnut and cryopreservation of transgenic lines. Plant Cell Tissue Organ Cult 91:281–288CrossRefGoogle Scholar
  8. Escobar RH, Mafla G, Roca WW (1997) A methodology for recovering cassava plants from shoot tips maintained in liquid nitrogen. Plant Cell Rep 16:474–478Google Scholar
  9. González-Benito ME, Prieto RM, Herradon E, Martin C (2002) Cryopreservation of Quercus suber and Quercus ilex embryonic axes: in vitro culture, desiccation and cooling factors. CryoLetters 23:283–290PubMedGoogle Scholar
  10. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta 107:161–170CrossRefGoogle Scholar
  11. Häggman H, Ryynanen L, Aronen T (2001) Cryopreservation of forest tree germplasm. Acta Hortic 560:121–124Google Scholar
  12. Häggman H, Rusanen M, Jokipii S (2008) Cryopreservation of in vitro tissues of deciduous trees. In: Reed B (ed) Plant cryopreservation: a practical guide. Springer, NY, pp 365–386CrossRefGoogle Scholar
  13. Harvengt L, Meier-Dinkel A, Dumas E, Collin E (2004) Establishment of a cryopreserved gene bank of European elms. Can J For Res 34:43–55CrossRefGoogle Scholar
  14. Hernández I, Celestino C, Alegre J, Toribio M (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis: II. Plant regeneration from selected cork oak trees. Plant Cell Rep 21:765–770PubMedGoogle Scholar
  15. Jorquera L (2009) Cryopreservación de ejes embrionarios y ápices caulinares de castaño (Castanea sativa Mill.) y roble (Quercus robur L). Doctoral Thesis, University of Santiago de Compostela, SpainGoogle Scholar
  16. Knapic S, Louzada JL, Leal S, Pereira H (2008) Within-tree and between-tree variation of wood density components in cork oak trees in two sites in Portugal. Forestry 81:465–473CrossRefGoogle Scholar
  17. Luque J, Parladé J, Pera J (2002) Seasonal changes in susceptibility of Quercus suber to Botryosphaeria stevensii and Phytophthora cinnamomi. Plant Pathol 51:338–345CrossRefGoogle Scholar
  18. Martínez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46:182–189CrossRefPubMedGoogle Scholar
  19. Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:473–479CrossRefGoogle Scholar
  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  21. Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang S, Wilde HD, Kodrzycki RJ, Zhang C, Gause KC, Parks DW, Hinchee MA (2005) Forest biotechnology: Innovative methods, emerging opportunities. In Vitro Cell Dev Biol Plant 41:701–717CrossRefGoogle Scholar
  22. Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34:231–239CrossRefGoogle Scholar
  23. Reed BM (2000) Genotype considerations in temperate fruit crop cryopreservation. In: Engelmann F, Takai H (eds) Cryopreservation of tropical plant germplasm. JIRCAS, Tsukuba, pp 246–249Google Scholar
  24. Reed BM (2001) Implementing cryogenic storage of clonally propagated plants. CryoLetters 22:97–104PubMedGoogle Scholar
  25. Reed BM (2008) Cryopreservation-practical considerations. In: Reed B (ed) Plant cryopreservation: a practical guide. Springer, NY, pp 3–13CrossRefGoogle Scholar
  26. Reed BM, Denoma J, Luo J, Chang YJ, Towill L (1998) Cryopreservation and long-term storage of pear germplasm. In Vitro Cell Dev Biol Plant 34:256–260CrossRefGoogle Scholar
  27. Rodríguez L, Cuenca B, López CA, Lario FJ, Ocaña L (2005) Selection of Castanea sativa Mill. genotypes resistant to ink disease in Galicia (Spain). Acta Hortic 693:645–651Google Scholar
  28. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33CrossRefGoogle Scholar
  29. Sánchez MC, Vieitez AM (1991) In vitro morphogenetic competence of basal sprouts and crown branches of mature chestnut. Tree Physiol 8:59–70PubMedGoogle Scholar
  30. Sánchez C, Martínez MT, Vidal N, San-José MC, Valladares S, Vieitez AM (2008) Preservation of Quercus robur germplasm by cryostorage of embryogenic cultures derived from mature trees and RAPD analysis of genetic stability. CryoLetters 29:493–504PubMedGoogle Scholar
  31. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plant cell culture. Can J Bot 50:199–204CrossRefGoogle Scholar
  32. Silva JS, Catry F (2006) Forest fires in cork oak (Quercus suber) stands in Portugal. Int J Environ Stud 63:235–257CrossRefGoogle Scholar
  33. Sutton B (2002) Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann Forest Sci 59:657–661CrossRefGoogle Scholar
  34. Takagi H (2000) Recent developments in cryopreservation of shoot apices of tropical species. In: Engelmann F, Takai H (eds) Cryopreservation of tropical plant germplasm. JIRCAS, Tsukuba, pp 178–193Google Scholar
  35. Turchetti T, Maresi G (2005) Phytosanitary criteria for the protection of chestnut orchards and stands against chestnut blight and ink disease. Acta Hortic 693:521–528Google Scholar
  36. Valladares S, Toribio M, Celestino C, Vieitez AM (2004) Cryopreservation of embryogenic cultures from mature Quercus suber trees using vitrification. CryoLetters 25:177–186PubMedGoogle Scholar
  37. Vidal N, Sánchez C, Jorquera L, Ballester A, Vieitez AM (2005) Cryopreservation of chestnut by vitrification of in vitro-grown shoot tips. In Vitro Cell Dev Biol Plant 41:63–68CrossRefGoogle Scholar
  38. Vieitez AM, Sánchez C, García-Nimo ML, Ballester A (2007) Protocol for micropropagation of Castanea sativa. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Heidelberg, pp 299–312CrossRefGoogle Scholar
  39. Vieitez AM, Corredoira E, San-José MC (2010) Techniques and protocols on the cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. In Thorphe TA, Yeung ECT (eds). Plant Embryo Culture: Methods and Protocols. Humana Press (in press)Google Scholar
  40. Wilhelm E (2000) Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell Dev Biol Plant 36:349–357CrossRefGoogle Scholar
  41. Wowk B, Leitl E, Rasch CM, Mesbah-Karimi N, Harris SB, Fahy GM (2000) Vitrification enhancement by synthetic ice blocking agents. Cryobiology 40:228–236CrossRefPubMedGoogle Scholar
  42. Zhao MA, Xhu YZ, Dhital SP, Khu DM, Song YS, Wang MY, Lim HT (2005) An efficient cryopreservation procedure for potato (Solanum tuberosum) utilizing the new ice blocking agent, Supercool X1000. Plant Cell Rep 24:477–481CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Nieves Vidal
    • 1
  • Ana M. Vieitez
    • 1
  • M. Rosario Fernández
    • 2
  • Beatriz Cuenca
    • 2
  • Antonio Ballester
    • 1
  1. 1.Instituto de Investigaciones Agrobiológicas de Galicia, CSICSantiago de CompostelaSpain
  2. 2.Departamento de Mejora AgroforestalTRAGSAMaceda, OurenseSpain

Personalised recommendations