Advertisement

European Journal of Forest Research

, Volume 129, Issue 3, pp 431–441 | Cite as

The seasonal variability of air pollution effects on pine conditions under changing climates

  • Algirdas AugustaitisEmail author
  • Ingrida Augustaitienė
  • Almantas Kliučius
  • Gintaras Pivoras
  • Dalia Šopauskienė
  • Raselė Girgždienė
Original Paper

Abstract

The multiple-stressor effects of air pollution, nutrient and water availability are the key issues of present forest ecosystem research. However, too little is known about the seasonal effect of pollutants on tree crown defoliation and their interaction with changes in climate. Therefore, data on seasonal variation in air pollution, including surface ozone, deposition of acidifying compounds and meteorological conditions, were tested against pine defoliation to identify the periods when the effect of the considered contaminants is most pronounced. The findings of the study revealed that a higher level of air concentrations of acidifying pollutants and their deposition was observed during the dormant period, with the exception of only ΣNH4+ air concentrations and their monthly deposition. An increase in precipitation over the vegetation period and mean monthly temperature from September to December, as well as a decrease in temperature and precipitation over the remaining months of the dormant period represented the climate change condition over the 14-year period in the observed region. Detected changes in the considered parameters during the dormant period were found to be most significant to changes in pine crown defoliation. Therefore, we concluded that climate changes, if they occur by the detected scenarios, should mitigate the negative effect of air pollutants and acid deposition on pine crown condition.

Keywords

Ozone Ozone Concentration Precipitation Amount Vegetation Period Acid Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aber JD (1992) Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol 7:220–224CrossRefGoogle Scholar
  2. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934CrossRefGoogle Scholar
  3. Augustaitis A, Augustaitiene I, Deltuvas R (2007) Scots pine (Pinus sylvestris L.) crown defoliation in relation to the acid deposition and meteorology in Lithuania. Water Air Soil Pollut 182:335–348CrossRefGoogle Scholar
  4. Augustaitis A, Bytnerowicz A (2008) Contribution of ambient ozone to Scots pine defoliation and reduced growth in the Central European forests: a Lithuanian case study. Environ Pollut 155:436–445CrossRefPubMedGoogle Scholar
  5. Augustaitis A, Juknys R, Kliucius A, Augustaitiene I (2003) The changes of Scots pine (Pinus sylvestris L.) tree stem and crown increment under decreased environmental pollution. Ekologia (Bratislava) 22(S1):30–36Google Scholar
  6. Augustaitis A, Augustaitiene I, Kliucius A, Bartkevicius E, Mozgeris G, Sopauskiene D, Eitminaviciute I, Arbaciauskas K, Mazeikyte R, Bauziene I (2005) Impact of acidity components in the air and their deposition on biota in forest ecosystems. Baltic For 2:84–93Google Scholar
  7. Augustaitis A, Augustaitiene I, Kliucius A, Pivoras G, Bendoraicius B, Sopauskienė D, Jasineviciene D, Buziene I, Eitminaviciute I, Arbaciauskas K, Mazeikyte R (2008) N deposition, balance and benefit in the forest ecosystem of main landscape types of Lithuania. Int J Environ Stud 65:337–357CrossRefGoogle Scholar
  8. Bauer F (1982) Kommt es forstlich zur Katastrophe? Allgemeine Forstzeitschrift 29:865–867Google Scholar
  9. Bytnerowicz A, Godzik B, Fraczek W, Grodzinska K, Krywult M, Badea O, Barancok P, Blum O, Cerny M, Godzik S, Mankovska B, Manning W, Moravcik P, Musselman R, Oszlanyi J, Postelnicu D, Szdzuj J, Varsavova M, Zota M (2002) Distribution of ozone and other air pollutants in forests of the Carpathian Mountains in central Europe. Environ Pollut 116:3–25CrossRefPubMedGoogle Scholar
  10. Bytnerowicz A, Godzik B, Grodzinska K, Fraczek W, Musselman R, Manning W, Badea O, Popescu F, Fleischer P (2004) Ambient ozone in forests of the central and eastern European mountains. Environ Pollut 130:5–16CrossRefPubMedGoogle Scholar
  11. CLRTAP (2005) Twenty-five years of international cooperation on the convention on long-rang transboundary air pollution 1979–2004. UN-ECEGoogle Scholar
  12. De Vries W, Klap J, Erisman JW (2000) Effects of environmental stress on forest crown condition in Europe. Part I: hypotheses and approach to the study. Water Air Soil Pollut 119:317–333CrossRefGoogle Scholar
  13. De Vries W, Vel E, Reinds GJ, Deelstra H, Klap JM, Leeters EEJM, Hendriks CMA, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman JW (2003a) Intensive monitoring of forest ecosystems in Europe: 1. Objectives, set-up and evaluation strategy. For Ecol Manag 174:77–95CrossRefGoogle Scholar
  14. De Vries W, Reinds GJ, Vel E (2003b) Intensive monitoring of forest ecosystems in Europe 2: atmospheric deposition and its impacts on soil solution chemistry. For Ecol Manag 174:97–115CrossRefGoogle Scholar
  15. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333Google Scholar
  16. Driscoll ChT, Driscoll KM, Mitchell MJ, Raynal DJ (2003) Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environ Pollut 123:327–336CrossRefPubMedGoogle Scholar
  17. EMEP (1977) Manual of sampling and chemical analysis, EMEP/CHEM 3/77. Norwegian Institute for Air Research, OsloGoogle Scholar
  18. Evans LS (1984) Botanical aspects of acidic precipitation. Bot Rev 50:449–490CrossRefGoogle Scholar
  19. Fuhrer J, Skärby L, Ashmore MR (1997) Critical levels of ozone effects in Europe. Environ Pollut 97:18–29CrossRefGoogle Scholar
  20. Girgzdiene R, Bycenkiene S, Girgzdys A (2007) Variations and trends of AOT40 and ozone in the rural areas of Lithuania. Environ Monit Assess 127(1-3):327–335CrossRefPubMedGoogle Scholar
  21. IPCC (2007) Climate change 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S et al. (ed) Cambridge University Press Cambridge UK and New York NY USA http://www.ipcc.ch/
  22. Juknys R, Vensloviene J, Stravinskiene V, Augustaitis A, Bartkevicius E (2003) Scots pine (Pinus sylvestris L.) growth and condition in a polluted environment: from decline to recovery. Environ Pollut 125:205–212CrossRefPubMedGoogle Scholar
  23. Kahle HP, Spiecker H (1996) Modelling growth-climate relationships of Norway spruces in high elevations of the Black Forest (Germany). European For Inst Proc 5:205–220Google Scholar
  24. Klap J, Voshaar JO, Vries WD, Erisman JW (1997) Relation between crown condition and stress factors. In: Muller-Edzards Ch, de Vries W, Erisman JW (ed) Ten years of monitoring forest condition in Europe. Studies on temporal development, spatial distribution and impact of natural and anthropogenic stress factors. UN-ECE pp 277–298Google Scholar
  25. Klap JM, Oude Voshaar JH, De Vries W, Erisman JW (2000) Effects of environmental stress on forest crown condition in Europe. Part IV: statistical analyses of relationships. Water Air Soil Pollut 119:387–420CrossRefGoogle Scholar
  26. Knabe W (1981) Immissionsökologische Waldzustandserfassung in Nordhein-Westfalen. Allgemeine Forstzeitschrift 26:641–643Google Scholar
  27. Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic Press Inc., San DiegoGoogle Scholar
  28. LRTAB (2004) LRTAB Mapping manual. UNECE. http://www.icpmapping.org
  29. Makinen H, Nojd P, Kahle HP, Neumann U, Tveite B, Mielikainen K (2003) Radial growth of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manage 171:243–259CrossRefGoogle Scholar
  30. Mayerhofer P, Alcamo J, Posch M, Van Minnen JG (2001) Regional air pollution and climate change in Europe. Water Air Soil Pollut 130:1151–1156CrossRefGoogle Scholar
  31. Mehne-Jakobs BM (1990) Untersuchungen zur Überprufung der Epidemiehypothese als Erklärungsansatz zu den neuartigen Waldschäden. Allgemeine Forst—und Jagdzeitung 161:231–239Google Scholar
  32. Mellert KH, Prietzel J, Straussberger R, Rehfuess KE, Kahle HP, Perez P, Spiecker H (2008) Relationships between long-term trends of air temperature, precipitation, nitrogen nutrition and growth of coniferous stands in Central Europe and Finland. Eur J For Res 127:507–524Google Scholar
  33. Roberts TM, Skeffington RA, Blank LW (1989) Causes of type 1 spruce decline in Europe. Forestry 62(3):179–222CrossRefGoogle Scholar
  34. Seidling W (2007) Signals of summer drought in crown condition data from the German level I network. Eur J For Res 126:529–544Google Scholar
  35. Smith W (1981) Air pollution and forests. Springer-Verlag, New YorkGoogle Scholar
  36. Solberg S, Derwent RG, Hov O, Langne J, Lindskog A (2005) European abatement of surface ozone in a global perspective. Ambio 34:47–53CrossRefPubMedGoogle Scholar
  37. Sopauskiene D, Jasineviciene D (2006) Changes in precipitation chemistry in Lithuania for 1981–2004. J Environ Monit 8:347–352CrossRefPubMedGoogle Scholar
  38. Sopauskiene D, Jasineviciene D, Stapcinskaite S (2001) The effect of changes in European anthropogenic emissions on the concentrations of sulphur and nitrogen components in air and precipitation in Lithuania. Water Air Soil Pollut 130:517–522CrossRefGoogle Scholar
  39. UN-ECE (1993) Manual for integrated monitoring programme phase 1993–1996. Environmental report 5. Helsinki Environmental Data Centre, National Board of Waters and the Environment, HelsinkiGoogle Scholar
  40. UN-ECE (1994) Manual on methods and criteria for harmonised sampling, assessment, monitoring and analysis of the effects of air pollution on forests. ICPGoogle Scholar
  41. Wellbrock N, Riek W, Wolff B (2005) Characterisation of and changes in the atmospheric deposition situation in German forest ecosystems using multivariate statistics. Eur J Forest Res 124:261–271CrossRefGoogle Scholar
  42. WMO (1983) Guide of meteorological practices, 2nd edn. WMO-No. 100, GenevaGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Algirdas Augustaitis
    • 1
    Email author
  • Ingrida Augustaitienė
    • 1
  • Almantas Kliučius
    • 1
  • Gintaras Pivoras
    • 1
  • Dalia Šopauskienė
    • 2
  • Raselė Girgždienė
    • 2
  1. 1.Lituanian University of AgricultureKaunas dstrLithuania
  2. 2.Institute of PhysicsVilniusLithuania

Personalised recommendations