Advertisement

European Journal of Forest Research

, Volume 129, Issue 2, pp 199–208 | Cite as

Revisiting the use of soil water budget assessment to predict site productivity of sessile oak (Quercus petraea Liebl.) in the perspective of climate change

  • Laurent BergèsEmail author
  • Philippe Balandier
Original Paper

Abstract

Climate change is expected to increase the frequency and severity of drought events over the next few decades in Western Europe. Consequently, there is a crucial need for an efficient tool for field water budget diagnosis to enable forest managers to estimate tree survival and productivity. Robust estimates of water budget using soil and topography were compared for their ability to predict site yield of Quercus petraea (Matt.) Liebl. Site yield was estimated using site index at 100 years. Ninety-nine even-aged high-forest stands located in northern France were investigated. Water budget was estimated by topographic position and soil water capacity (SWC) calculated for different soil depths down to a maximum 2.0 m. (1) Site index predictions improved when calculating SWC for increasing depths until 1.0 m. (2) Site index predictions did not improve when calculating SWC at depths below 1.0 m, thus confirming that the water contained in deep soil layers is not used for tree growth but probably contributes to tree fitness or survival by maintaining a not too negative in-tree water potential. (3) Topographic position was also a predictor of site index in addition to SWC. Practical recommendations for estimating extractable soil water content are given.

Keywords

Climate change Drought Soil water capacity Topography Soil depth Quercus petraea Liebl 

Notes

Acknowledgments

This work was supported by an agreement linking the French Ministry of Agriculture (DERF) and the Cemagref, entitled Relationships between site, growth and wood quality of indigenous oaks No. 01.40.07/95. We thank the two anonymous reviewers who provided helpful comments to improve the manuscript. We are sincerely grateful to G. Grandjean for his precious help during the sampling of various forest site conditions, B. Jabiol for suggestions on soil descriptions and chemical analyses, and A. Perrin and J.C. Rat for their technical help during increment core collection. We would also like to thank the French National Forestry Office (ONF) for their technical help during this project, especially P. Duplat (ONF) for valuable comments during the study. We are grateful to the private owners and the ONF who gave us permission to work in their forests and core the trees.

References

  1. Ameglio T, Archer P, Cohen M, Valancogne C, Daudet FA, Dayau S, Cruiziat P (1998) Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant Soil 207:155–167CrossRefGoogle Scholar
  2. Badot PM, Lucot E, Bruckert S (1994) Soil-moisture in deep levels is the main source of mid-day water potential variations in oak (Quercus sp). C R Acad Sci III-Vie 317:341–345Google Scholar
  3. Baize D (2000) Guide des analyses en pédologie, 2ème édition revue et augmentée. INRA, ParisGoogle Scholar
  4. Baize D, Jabiol B (1995) Guide pour la description des sols. INRA, ParisGoogle Scholar
  5. Bergès L, Chevalier R, Dumas Y, Franc A, Gilbert JM (2005) Sessile oak (Quercus petraea Liebl.) site index variations in relation to climate, topography and soil in even-aged high-forest stands in northern France. Ann For Sci 62:391–402CrossRefGoogle Scholar
  6. Bonneau M (1995) Fertilisation des forêts dans les pays tempérés. Ecole Nationale du Génie Rural, des Eaux et des Forêts (ENGREF), NancyGoogle Scholar
  7. Bowersox TW, Ward WW (1972) Prediction of oak site index in the ridge and valley region of Pennsylvania. For Sci 18:192–195Google Scholar
  8. Bréda N, Granier A (1996) Intra and inter-annual variation of transpiration, leaf area index and radial growth of a sessile oak stand. Ann Sci For 53:521–536CrossRefGoogle Scholar
  9. Bréda N, Granier A, Barataud F, Moyne C (1995) Soil-water dynamics in an oak stand. 1. Soil-moisture, water potentials and water-uptake by roots. Plant Soil 172:17–27CrossRefGoogle Scholar
  10. Bréda N, Lefevre Y, Badeau V (2002) Forest soil extractable water: specificity and estimation. La Houille Blanche Revue Internationale de l’Eau 3:24–32CrossRefGoogle Scholar
  11. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  12. Bruand A, Tessier D (2000) Water retention properties of the clay in soils developed on clayey sediments: significance of parent material and soil history. Eur J Soil Sci 51:679–688Google Scholar
  13. Bruand A, Pérez-Fernandez P, Duval O, Quétin P, Nicoullaud B, Gaillard H, Raison L, Pessaud JF, Prud’Homme L (2002) Prediction of water retention properties of soils: use of pedotransfer classes based on texture alone and on both texture and structure (in French). Etude et Gestion des Sols 9:105–125Google Scholar
  14. Carmean WH (1975) Forest site quality evaluation in the United States. Adv Agron 27:209–269CrossRefGoogle Scholar
  15. Chauvin F, Denvil S (2007) Changes in severe indices as simulated by two French coupled global climate models. Glob Planet Change 57:96–117CrossRefGoogle Scholar
  16. Chen HYH, Krestov PV, Klinka K (2002) Trembling aspen site index in relation to environmental measures of site quality at two spatial scales. Can J For Res 32:112–119CrossRefGoogle Scholar
  17. Cochard H, Bréda N, Granier A, Aussenac G (1992) Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q. robur L). Ann For Sci 49:225–233CrossRefGoogle Scholar
  18. Coutadeur C, Cousin I, Nicoullaud B (2000) Influence de la phase caillouteuse sur la réserve en eau des sols. Etude et Gestion des Sols 7:191–205Google Scholar
  19. Curt T (1999) Predicting yield of Norway spruce and Douglas-fir using a morphopedological approach in the granitic landscapes of French Massif Central. Can J Soil Sci 79:491–500Google Scholar
  20. Curt T, Bouchaud M, Agrech G (2001) Predicting site index of Douglas-Fir plantations from ecological variables in the Massif Central area of France. For. Ecol. Manage. 149:61–74CrossRefGoogle Scholar
  21. Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Change 57:16–26CrossRefGoogle Scholar
  22. Duplat P (1989) Indice de fertilité basé sur un modèle de croissance en hauteur. In: Buffet M, Girault D (eds) Station forestière, production et qualité du bois : éléments méthodologiques. Cemagref, Nogent-sur-Vernisson, pp 51–78Google Scholar
  23. Duplat P, Tran-Ha M (1997) Modelling the dominant height growth of sessile oak (Quercus petraea Liebl.) in France—inter-regional variability and effect of the recent period (1959–1993). Ann Sci For 54:611–634CrossRefGoogle Scholar
  24. Granier A, Breda N, Biron P, Villette S (1999) A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283CrossRefGoogle Scholar
  25. Gras R, Monnier G (1962) Contribution des cailloux à la capacité de réserve en eau des sols. CR Acad Sci 254:3422–3424Google Scholar
  26. Jacquemin B, Lacroix R, Demarcq P, Duplat P (2000) Relationship between site and site index for sessile oak (Quercus petraea) in the Troncais forest. Bull Tech de l’ONF 39:33–44Google Scholar
  27. Jamagne M, Bétremieux R, Begon JC, Morin A (1977) Quelques données sur la variabilité dans le milieu naturel de la réserve en eau des sols. Bull Tech Inf 324–325:627–641Google Scholar
  28. Le Goff N, Lévy G (1984) Productivité du frêne (Fraxinus excelsior L.) en région Nord-Picardie. Ann Sci For 41:135–170CrossRefGoogle Scholar
  29. Lebourgeois F, Jabiol B (2002) Enracinements comparés des chênes (sessile et pédonculé) et du hêtre sur différents matériaux. Réflexions sur l’autécologie des essences. Revue Forestière Française 54:17–42Google Scholar
  30. Lebourgeois F, Cousseau G, Ducos Y (2004) Climate-tree-growth relationships of Quercus petraea Mill. stand in the Forest of Bercé (“Futaie des Clos”, Sarthe, France). Ann For Sci 61:361–372CrossRefGoogle Scholar
  31. Lévy G (1988) Appréciation de la fertilité du sol. Ann Sci For 40:11–18Google Scholar
  32. Otieno DO, Kurz-Besson C, Liu J, Schmidt M, Do R, David TS, Siegwolf R, Pereira JS, Tenhunen JD (2006) Seasonal variations in soil and plant water status in a Quercus suber L. Stand: roots as determinants of tree productivity and survival in the mediterranean-type ecosystem. Plant Soil 283:119–135CrossRefGoogle Scholar
  33. Pritchett WL, Fisher RF (1987) Properties and management of forest soils, 2nd edn. John Wiley, New YorkGoogle Scholar
  34. Rambal S (1984) Water balance and pattern of root water uptake by a Quercus coccifera L. evergreen scrub. Oecologia 62:18–25CrossRefGoogle Scholar
  35. Sala A, Tenhunen JD (1994) Site-specific water relations and stomatal response of Quercus-ilex in a Mediterranean watershed. Tree Physiol 14:601–617PubMedGoogle Scholar
  36. Sampson DA, Allen HL (1999) Regional influences of soil available water-holding capacity and climate, and leaf area index on simulated loblolly pine productivity. For Ecol Manage 124:1–12CrossRefGoogle Scholar
  37. Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–399CrossRefGoogle Scholar
  38. Schar C, Vidale PL, Luthi D, Frei C, Haberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefPubMedGoogle Scholar
  39. Seynave I, Gégout JC, Hervé JC, Dhôte JF, Drapier J, Bruno E, Dumé G (2005) Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases. Can J For Res 35:1669–1678CrossRefGoogle Scholar
  40. Spittlehouse DL, Black TA (1981) A growing season water balance model applied to two Douglas fir stands. Water Resour Res 17:1651–1656CrossRefGoogle Scholar
  41. Timbal J, Aussenac G (1996) An overview of ecology and silviculture of indigenous oaks in France. Ann Sci For 53:649–661CrossRefGoogle Scholar
  42. Wang GG, Klinka K (1996) Use of synoptic variables in predicting white spruce site index. For Ecol Manage 80:95–105CrossRefGoogle Scholar
  43. Warren JM, Meinzer FC, Brooks JR, Domec JC (2005) Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests. Agric For Meteorol 130:39–58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Cemagref, UR EFNONogent-sur-VernissonFrance
  2. 2.INRA, UMR547 PIAFClermont-FerrandFrance

Personalised recommendations