European Journal of Forest Research

, Volume 129, Issue 3, pp 475–488 | Cite as

Long-term monitoring of the metal accumulation in forests measured by use of the moss technique

  • Winfried Schröder
  • Roland PeschEmail author
Original Paper


This study aimed at analyzing the metal accumulation in mosses sampled in forests across Germany. The data that were used to this end were collected in the framework of the European Heavy Metals in Mosses Surveys conducted every 5 years since 1990 in at least 21 European countries. The moss surveys aim at uncovering the accumulation of up to 40 metals and, since 2005, nitrogen in mosses. Germany took part in the moss-monitoring campaigns 1990, 1995, 2000 and 2005. The sampling at up to 1,028 forest sites and the chemical measurements of the concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), nickel (Ni), lead (Pb), antimony (Sb), titanium (Ti), vanadium (V) and zinc (Zn) followed a European guideline. The measurement data and the detailed sites descriptions were integrated into a geographical information system. The site and element-specific measurement data as well as their geostatistical surface estimations were analyzed by means of descriptive statistics and they were aggregated to multi-metal indices (MMI). The MMI represents the mean rank of each monitoring site or geostatistically estimated raster cell regarding all elements referred to. Hence, the metal bioaccumulation in German forests could be assessed as a whole over the period 1990–2005. The MMI was calculated for two sets of elements: Cr, Cu, Fe, Ni, Pb, Ti, V and Zn (MMI1990–2005) and As, Cd, Cr, Cu, Fe, Ni, Pb, Ti, V and Zn (MMI1995–2005). Element-specific percentile statistics and correlation analyses were performed to uncover element-specific developments over time. Furthermore, correlations between metal concentrations in mosses and depositions were calculated. In terms of the MMI1990–2005 and the MMI1995–2005, respectively, the metal bioaccumulation in the forests of Germany clearly decreased continuously between 1990 and 2000. Contrary to this, the MMI increased from 2000 to 2005. This also holds true for the medians of the element loads of As, Cr, Cu, Fe, Ni, Sb, Ti and Zn. The median bioaccumulation of Cd, Pb and V in the German forests do not follow this trend after they have been decreasing continuously since 1990 together with all other elements. Many of the elements show moderate correlations (r > 0.5) but these correlations could not be corroborated to be stable over time. Moderate to high correlations could be proven for the metal concentrations in mosses and depositions. The European moss monitoring allows for a long-term monitoring of the metal bioaccumulation in forests. The moss surveys complement and detail the deposition measurements in forest ecosystems in terms of high spatial resolution and a broad range of elements. No other Germany monitoring network allows for combination of measurement data with topographical, land use and ecological information describing the sampling sites and their surroundings to evaluate whether the measurements are influenced by site-specific or regional land characteristics. Other investigations would profit from such a comprehensive data base since factors could be detected which, besides the deposition rates, influence the metal bioaccumulation in forests: moss species-specific accumulation rates, canopy drip effects and the growth patterns of the sampled mosses. The investigation gives the latest comprehensive overview of the metal bioaccumulation in the German forests. The MMI approach allows summarising the temporal trends of element loads in mosses. The moss monitoring is a significant part of forest monitoring and unique regarding spatial resolution, elements covered, and consideration of site-specific and regional confounding factors in the statistical analyses and transparency and performance of data management.


Bioaccumulation Biomonitoring Heavy metals Multi-metal index Percentile statistics Geostatistics 


  1. Ashmore M, Bell S, Fowler D, Hill M, Jordan C, Nemitz E, Parry S, Pugh B, Reynolds B, Williams J (2000) Survey of the UK metal content of mosses 2000. Part II of EPG 1/3/144 final contract report: development of a critical load methodology for toxic metals in soils and surface waters: stage II. University of Bradford, BradfordGoogle Scholar
  2. Bealey W, Cape JN, Leith ID, Long S, Kinnerlsey RP (2008a) Air quality outcomes in pollution regulation: strengths, limitations and potential. Science Report SC030175/SR1, CEH Project Number: C02600. Environment Agency, Bristol, pp 1–47Google Scholar
  3. Bealey WJ, Long S, Spurgeon DJ, Leith I, Cape JN (2008b) Review and implementation study of biomonitoring for assessment of air quality outcomes. Science Report SC030175/SR2. Environment Agency, Bristol, pp 1–170Google Scholar
  4. Büttner B, Feranec J, Jaffrain G (2002) Corine land cover update 2000. Technical guidelines. European Environment Agency, Copenhagen, pp 1–56Google Scholar
  5. Castello M (2007) A Comparison between two moss species used as transplants for airborne trace element biomonitoring in NE Italy. Environ Monit Assess 133:267–276. doi: 10.1007/s10661-006-9579-9 CrossRefPubMedGoogle Scholar
  6. Coşkun M, Frontasyeva MV, Steinnes E, Cotuk AY, Pavlov SS, Coşkun M, Sazonov AS, Cayir A, Belivermis M (2005) Atmospheric deposition of heavy metals in thrace studied by analysis of moss (Hypnum cupressiforme). Bull Environ Contam Toxicol 74:201–209. doi: 10.1007/s00128-004-0569-8 CrossRefPubMedGoogle Scholar
  7. Diehl MS, Beard K (2009) Spatial analysis of atmospheric deposition and terrestrial accumulation of mercury within Acadia National Park. In: Northeastern section—44th annual meeting (22–24 March 2009), session no. 48: GIS applications in geoscience teaching, research and map production. Spatial Information Sciences Engineering, University of Maine, Orono (
  8. Fränzle O, Schimming CG (2008) Element fluxes in atmosphere, vegetation and soil. In: Fränzle O, Kappen L, Blume HP, Dierssen K (eds) Ecosystem organization of a complex landscape. Long-term research in the Bornhöved Lake District Germany. Springer, Berlin, pp 169–205Google Scholar
  9. Fränzle O, Straskraba M, Jørgensen SE (1995) Ecology and ecotoxicology. Ullmann’s encyclopedia of industrial chemistry, vol B7. VCH, Weinheim, pp 19–154Google Scholar
  10. Funk W, Dammann V, Donnevert G (2006) Quality assurance in analytical chemistry. Applications in environmental, food and materials analysis, biotechnology and medical engineering, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  11. Gauger T, Anshelm F, Schuster H, Erisman JW, Vermeulen AT, Draaijers GPJ, Bleeker A, Nagel HD (2002) Mapping of ecosystem specific long-term trends in deposition loads and concentrations of air pollutants in Germany and their comparison with critical loads and levels. Part 1: Deposition Loads 1990–1999. Final Report 29942210 on behalf of Federal Environmental Agency (Umweltbundesamt), BerlinGoogle Scholar
  12. Gerdol R, Bragazza L (2006) Effects of altitude on element accumulation in alpine moss. Chemosphere 64:810–816. doi: 10.1016/j.chemosphere.2005.10.053 CrossRefPubMedGoogle Scholar
  13. Gerdol R, Bragazza L, Marchesini R (2002) Element concentrations in the forest moss Hylocomium splendens: variation associated with altitude, net primary production and soil chemistry. Environ Pollut 116:129–135. doi: 10.1016/S0269-7491(01)00198-1 CrossRefPubMedGoogle Scholar
  14. Groet SS (1976) Regional and local variations in heavy metal concentrations in bryophytes in the north-eastern United States. Oikos 27:445–456CrossRefGoogle Scholar
  15. Hagl S (2008) Schnelleinstieg Statistik—Daten erheben, analysieren, präsentieren. Haufe, FreiburgGoogle Scholar
  16. Harmens H (2005) Monitoring of atmospheric heavy metal deposition in Europe using bryophytes. Monitoring manual 2005/2006 survey. ICP Vegetation Coordination Centre, Centre for Ecology and Hydrology, BangorGoogle Scholar
  17. Harmens H, Norris D and the participants of the moss survey (2008) Spatial and temporal trends in heavy metal accumulation in mosses in Europe (1990–2005). Programme Coordination Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Environment Centre Wales, BangorGoogle Scholar
  18. Herpin U, Lieth H, Markert B (1995) Monitoring der Schwermetallbelastung in der Bundesrepublik Deutschland mit Hilfe von Moosanalysen. UBA-Texte 31/95, BerlinGoogle Scholar
  19. Holy M, Leblond S, Pesch R, Schröder (2009) Assessing spatial patterns of metal bioaccumulation in French mosses by means of an exposure index. Environ Sci Pollut Res. doi: 10.1007/s11356-009-0146-0
  20. Hornsmann I, Pesch R, Schmidt G, Schröder W (2008) Calculation of an Ecological Land Classification of Europe (ELCE) and its application for optimising environmental monitoring networks. In: Car A, Griesebner G, Strobl J (eds) Geospatial Crossroads @ GI_Forum ‘08: proceedings of the Geoinformatics Forum Salzburg. Wichmann, Heidelberg, pp 140–151Google Scholar
  21. ICP Vegetation (2005) Heavy metals in European mosses: 2005/2006 survey. Monitoring manual. ICP Vegetation Coordination Centre, Centre for Ecology and Hydrology, BangorGoogle Scholar
  22. Ilyin I, Travnikov O, Aas W (2006) Heavy metals: transboundary pollution of the environment. EMEP/MSC-E Status Report 2/2006. Meteorological Synthesizing Centre - East, Moscow.
  23. Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS Geostatistical Analyst. Environmental Systems Research Institute, RedlandsGoogle Scholar
  24. Kass GV (1980) An exploratory technique for investigating large quantities of categorical data. Appl Stat 29(2):127–199. doi: 10.2307/2986296 CrossRefGoogle Scholar
  25. Kleppin L, Pesch R, Schröder W (2008) CHAID-Models on boundary conditions of metal accumulation in mosses collected in Germany 1990, 1995 and 2000. Atmos Environ 42(21):5220–5231. doi: 10.1016/j.atmosenv.2008.02.058 CrossRefGoogle Scholar
  26. Krachler M, Zheng J, Koerner R, Zdanowicz C, Fisher D, Shotyk W (2005) Increasing atmospheric antimony contamination in the northern hemisphere: snow and ice evidence from Devon Island, Arctic Canada. J Environ Monit 7:1169–1176. doi: 10.1039/b509373b CrossRefPubMedGoogle Scholar
  27. Leblond S, Rausch de Traubenberg C (2006) Etude des retombées atmosphériques de métaux en France. Estimation par dosage dans des mousses. Campagne 2006 du dispositif BRAMM (Biosurveillance des Retombées Atmosphériques Métalliques par les Mousses). Marche ADEME 0036(N° 0562C): 1er Rapport Intermédiaire, ParisGoogle Scholar
  28. Leblond S, Rausch de Traubenberg C (2007) Etude des retombées atmosphériques de métaux en France. Estimation par dosage dans des mousses. Campagne 2006 du dispositif BRAMM (Biosurveillance des Retombées Atmosphériques Métalliques par les Mousses). Marche ADEME 0036(N° 0562C): 2ième Rapport Intermédiaire, ParisGoogle Scholar
  29. Lindberg SE, Turner RR (1988) Factors influencing atmospheric deposition, stream export, and landscape accumulation of trace metals in forested watersheds. Water Air Soil Pollut 39:123–156. doi: 10.1007/BF00250954 CrossRefGoogle Scholar
  30. Matheron G (1965) Les variables régionalisées et leur estimation. Masson, ParisGoogle Scholar
  31. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49. doi: 10.1038/338047a0 CrossRefGoogle Scholar
  32. Nriagu JO, Pacyna JF (1988) Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333:134–139. doi: 10.1038/333134a0 CrossRefPubMedGoogle Scholar
  33. Olajire A (1998) A survey of heavy metal deposition in Nigeria using the moss monitoring method. Environ Int 24(8):951–958. doi: 10.1016/S0160-4120(98)00078-6 CrossRefGoogle Scholar
  34. Onianwa PC (2001) Monitoring atmospheric metal pollution: a review of the use of mosses as indicators. Environ Monit Assess 71:13–50. doi: 10.1023/A:1011660727479 CrossRefPubMedGoogle Scholar
  35. Osborn D, Weeks JM, Hankard P, Dale L (2000) Potential uses of biomonitoring in pollution control—an introductory guide. Technical Report, Environment Agency, Copenhagen, pp 1–319Google Scholar
  36. Pakeman R, Osborn D, Hankard P (2000) Plants as biomonitors of atmospheric pollution: a review of their potential use in integrated pollution control. Technical Report, Environment Agency, Copenhagen, pp 1–318Google Scholar
  37. Pesch R (2003) Geostatistische und multivariat-statistische Analyse des Moos-Monitorings 1990, 1995 und 2000 zur Ableitung von Indikatoren für die Bioakkumulation atmosphärischer Metalleinträge in Deutschland. PhD Thesis, University of VechtaGoogle Scholar
  38. Pesch R, Schröder W (2006) Integrative exposure assessment through classification and regression trees on bioaccumulation of metals, related sampling site characteristics and ecoregions. Ecol Inform 1:55–65CrossRefGoogle Scholar
  39. Pesch R, Schröder W, Genßler L, Göritz A, Holy M, Kleppin L, Matter Y (2007) Moos-Monitoring 2005/2006: Schwermetalle IV und Gesamtstickstoff. Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicher-heit. FuE-Vorhaben 205 64 200, Abschlussbericht, im Auftrag des Umweltbundesamtes, DessauGoogle Scholar
  40. Pesch R, Schröder W, Dieffenbach-Fries H, Genßler L, Kleppin L (2008) Improving the design of environmental monitoring networks, Case study on the heavy metals in mosses survey in Germany. Ecol Inform 3:111–121CrossRefGoogle Scholar
  41. Poikolainen J (2004) Mosses, epiphytic lichens and tree bark as biomonitors for air pollutants—specifically for heavy metals in regional surveys. Dissertation, University of Oulu, OuluGoogle Scholar
  42. Rühling A, Tyler G (1968) An ecological approach to the lead problem. Bot Notiser 121:321–343Google Scholar
  43. Rühling A, Tyler G (1969) Ecology of heavy metals—a regional and historical study. Bot Notiser 121:248–259Google Scholar
  44. Rühling A, Tyler G (1970) Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.). Br Et Sch Oikos 21:248–342CrossRefGoogle Scholar
  45. Schmidt-Grob I, Thöni L, Hertz J (1991) Übersicht über die Deposition von Arsen, Blei, Cadmium, Chrom, Cobalt, Eisen, Kupfer, Molybdän, Nickel, Quecksilber, Schwefel, Thallium, Vanadium und Zink in der Schweiz mit Hilfe von Moosen als Biomonitoren. Forschungsstelle für Umweltbeobachtung, BirmensdorfGoogle Scholar
  46. Schröder W, Anhelm P, Bau H, Bröcker F, Matter Y, Mitze R, Mohr K, Peichl L, Peiter A, Peronne T, Pesch R, Roostai AH, Roostai Z, Schmidt G, Siewers U (2002): Untersuchung von Schadstoffeinträgen anhand von Bioindikatoren. Aus- und Bewertung der Ergebnisse aus dem Moos-Monitoring 1990, 1995 und 2000. Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit. FuE-Vorhaben 200 64 218, Abschlussbericht Band 1 bis 3. Synthesebericht, im Auftrag des Umweltbundesamtes, BerlinGoogle Scholar
  47. Schröder W, Pesch R, Englert C, Harmens H, Suchara I, Zechmeister HG, Thöni L, Maňkovská B, Jeran Z, Grodzinska K, Alber R (2008) Metal accumulation in mosses across national boundaries: uncovering and ranking causes of spatial variation. Environ Pollut 151:377–388. doi: 10.1016/j.envpol.2007.06.025 CrossRefPubMedGoogle Scholar
  48. Siewers U, Herpin U (1998) Schwermetalleinträge in Deutschland. Moos-Monitoring 1995. Geologisches Jahrbuch, Sonderhefte, Heft SD 2. Bornträger, StuttgartGoogle Scholar
  49. Siewers U, Herpin U, Straßburger S (2000) Schwermetalleinträge in Deutschland. Moos-Monitoring 1995. Teil 2. Geologisches Jahrbuch, Sonderhefte, Heft SD 3. Bornträger, StuttgartGoogle Scholar
  50. Šoltès R (1998) Correlation between altitude and heavy metal deposition in the Tatra Mountains (Slovakia). Biologia 53:85–90Google Scholar
  51. Sparks T (2000) Statistics in ecotoxicology. Ecological and environmental toxicology series, Wiley-VCH, WeinheimGoogle Scholar
  52. Steinnes E (1995) A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci Total Environ 160/161:243–249. doi: 10.1016/0048-9697(95)04360-D CrossRefGoogle Scholar
  53. Steinnes E (2008) Use of mosses to study atmospheric deposition of trace elements: contributions from investigations in Norway. Int J Environ Pollut 32:499–508. doi: 10.1504/IJEP.2008.018413 CrossRefGoogle Scholar
  54. Steinnes E, Rühling Å, Lippo H, Mäkinen A (1997) Reference materials for large-scale metal deposition surveys. Accredit Qual Assur 2(5):243–249. doi: 10.1007/s007690050141 CrossRefGoogle Scholar
  55. Stevens SS (1946) On the theory of scales of measurement. Science 103:677–680. doi: 10.1126/science.103.2684.677 CrossRefPubMedGoogle Scholar
  56. Sucharova J, Suchara I (2004) Bio-monitoring the atmospheric deposition of elements and their compounds using moss analysis in the Czech Republic. Results of the international bio-monitoring programme UNECE ICP-Vegetation 2000. Part I: elements required for the bio-monitoring programme. Acta Pruhoniciana 77:1–135Google Scholar
  57. Task Force on Health (2007) Health risks of heavy metals from long-range transboundary air pollution. World Health Organization, BonnGoogle Scholar
  58. Tyler G (1990) Bryophytes and heavy metals: a literature review. Bot J Linn Soc 104:231–253. doi: 10.1111/j.1095-8339.1990.tb02220.x CrossRefGoogle Scholar
  59. Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, ChichesterGoogle Scholar
  60. Zechmeister HG (1994) Biomonitoring der Schwermetalldepositionen mittels Moosen in Österreich. Monographien des Umweltbundesamtes 42:1–168Google Scholar
  61. Zechmeister HG (1995) Correlation between altitude and heavy metal deposition in the Alps. Environ Pollut 89:73–80. doi: 10.1016/0269-7491(94)00042-C CrossRefGoogle Scholar
  62. Zechmeister HG, Grodzinska K, Szarek-Lukaszewska G (2003) Bryophytes. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Principles concepts and applications. Elsevier, Amsterdam, pp 329–375CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Chair of Landscape EcologyUniversity of VechtaVechtaGermany

Personalised recommendations