Advertisement

Phosphorus supply and cycling at long-term forest monitoring sites in Germany

  • Katrin Ilg
  • Nicole Wellbrock
  • Wolfgang Lux
Original Paper

Abstract

In this study, the supply and input–output balances of phosphorus (P) were investigated for a 10-year-period at 85 long-term monitoring sites in German forest ecosystems under the European Level II programme. These sites encompass 23 European beech (Fagus sylvatica L.) stands, 9 oak stands comprised of common oak (Quercus robur L.) and/or sessile oak (Quercus petraea Liebl.), 20 Scots pine (Pinus sylvestris L.) and 33 Norway spruce (Picea abies H.Karst.) stands. We quantified P concentrations in needles and leaves, P inputs from the atmosphere, P outputs through leaching and harvesting, and total P in the soil and humus layers. The P concentrations in European beech leaves from two sites (>1 mg P g−1 dry weight), and in Norway spruce needles from four sites (>1.2 mg P g−1 dry weight), were deficient over several years. In contrast, the oak and Scots pine sites were well supplied with P. When P removal through harvesting was disregarded, P balances were positive or stable (median 0.21 kg P ha−1 a−1). With harvesting, balances were mostly negative (median −0.35 kg P ha−1 a−1), with long-term P removal from the forest ecosystems.

Keywords

Input–output balance Phosphorus Forest ecosystems Nutrient supply N:P ratio Level II sites 

Notes

Acknowledgments

Thanks to Petra Dühnelt whose comments improved this paper substantially. This research was supported by the German Federal Ministry of Food, Agriculture and Consumer Protection.

References

  1. Blanco JA, Zavala MA, Imbert JB, Castillo FJ (2005) Sustainability of forest management practices: evaluation through a simulation model of nutrient cycling. For Ecol Manage 213:209–2008. doi: 10.1016/j.foreco.2005.03.042 CrossRefGoogle Scholar
  2. BMELV, Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (2006) Bericht über den Zustand des Waldes – Ergebnisse des forstlichen Umweltmonitorings (in German)Google Scholar
  3. Bussotti F, Pancrazi M, Matteucci G, Gerosa G (2005) Leaf morphology and chemistry in fagus sylvatica (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol 25:211–219PubMedGoogle Scholar
  4. Campo J, Maass M, Jaramillo VJ, Martinez-Yrizar A, Sarukhan J (2001) Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry 53:161–179. doi: 10.1023/A:1010663516029 CrossRefGoogle Scholar
  5. Carreira JA, Harrison AF, Sheppard LJ, Woods C (1997) Reduced soil P availability in a Sitka spruce (Picea sitchensis (Bong.) Carr) plantation induced by applied acid-mist: significance in forest decline. For Ecol Manage 92:153–166. doi: 10.1016/S0378-1127(96)03914-X CrossRefGoogle Scholar
  6. Compton JE, Cole DW (1998) Phosphorus cycling and soil P fractions in douglas-fir and red alder stands. For Ecol Manage 110:101–112. doi: 10.1016/S0378-1127(98)00278-3 CrossRefGoogle Scholar
  7. De Schrijver A, Geudens G, Augusto L, Staelens J, Mertens J, Wuyts K, Giels L, Verheyen K (2007) The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153:663–674. doi: 10.1007/s00442-007-0776-1 PubMedCrossRefGoogle Scholar
  8. de Vries W, van der Salm C, Reinds GJ, Erisman JW (2007) Element fluxes through European forest ecosystems and their relationships with stand and site characteristics. Environ Pollut 148:501–513. doi: 10.1016/j.envpol.2006.12.001 PubMedCrossRefGoogle Scholar
  9. Dralle K, Larssen JB (1995) Growth response to different types of NPK-fertilizer in Norway spruce plantations in Western Denmark. Plant Soil 168–169:501–504. doi: 10.1007/BF00029362 CrossRefGoogle Scholar
  10. Duchesne L, Ouimet R, Camiré C, Houle D (2001) Seasonal nutrient transfer by foliar resorption, leaching, and litter fall in a northern hardwood forest at lake Clair watershed, Quebec, Canada. Can J For Res 31:333–344. doi: 10.1139/cjfr-31-2-333 CrossRefGoogle Scholar
  11. Ewald J (2000) Ist Phosphormangel für die geringe Vitalität von Buchen (Fagus sylvatica L.) in den Bayerischen Alpen verantwortlich? Forstwiss Centralbl 119:276–296. doi: 10.1007/BF02769143 (in German)
  12. FNR, Fachagentur Nachwachsende Rohstoffe e V. (2005) Leitfaden Bioenergie. Gülzow, Germany (in German)Google Scholar
  13. Fortune S, Lu J, Addiscott TM, Brookes PC (2005) Assessment of phosphorus leaching losses from arable land. Plant Soil 269:99–108. doi: 10.1007/s11104-004-1659-4 CrossRefGoogle Scholar
  14. Gallardo A, Covelo F (2005) Spatial pattern and scale of leaf N and P concentration in a Quercus robur population. Plant Soil 273:269–277. doi: 10.1007/s11104-004-7943-5 CrossRefGoogle Scholar
  15. Goller R, Wilcke W, Fleischbein K, Valarezo C, Zech W (2006) Dissolved nitrogen, phosphorus, and sulfur forms in the ecosystem fluxes of a montane forest in Ecuador. Biogeochemistry 77:57–89. doi: 10.1007/s10533-005-1061-1 CrossRefGoogle Scholar
  16. Gordon AM, Chourmouzis C, Gordon AG (2000) Nutrient inputs in litterfall and rainwater fluxes in 27-year old red, black and white spruce plantations in Central Ontario, Canada. For Ecol Manage 138:65–78. doi: 10.1016/S0378-1127(00)00412-6 CrossRefGoogle Scholar
  17. Güsewell S (2004) N:P ratios in terrestrial plant: variation and functional significance. New Phytol 164:243–265. doi: 10.1111/j.1469-8137.2004.01192.x CrossRefGoogle Scholar
  18. Harrison AF, Carreira J, Poskitt JM, Robertson SMC, Smith R, Hall J, Hornung M, Lindley DK (1999) Impacts of pollutant inputs on forest canopy condition in the UK: possible role of P limitations. Forestry 72:367–377. doi: 10.1093/forestry/72.4.367 CrossRefGoogle Scholar
  19. Hüttl RF (1991) Die Nährelementversorgung geschädigter Wälder in Europa und Nordamerika. Freiburger Bodenkundliche Abhandlungen, Heft 28, Freiburg (in German)Google Scholar
  20. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (2008) http://www.icp-forests.org
  21. Jacobsen C, Rademacher P, Meesenburg H, Meiwes KJ (2002) Gehalte chemischer Element in Baumkompartimenten - Literaturstudie und Datensammlung. Niedersächsische Forstliche Versuchsanstalt, Göttingen (in German)Google Scholar
  22. Jönsson AM, Ingerslev M, Raulund-Rasmussen K (2004) Frost sensitivity and nutrient status in a fertilized Norway spruce stand in Denmark. For Ecol Manage 201:199–209. doi: 10.1016/j.foreco.2004.06.030 CrossRefGoogle Scholar
  23. Kaiser K, Guggenberger G, Zech W (2000) Organically bound nutrients in dissolved organic matter fractions in seepage and pore water of weakly developed forest soils. Acta Hydrochim Hydrobiol 28:411–419. doi: 10.1002/1521-401X(20017)28:7<411::AID-AHEH411>3.0.CO;2-D CrossRefGoogle Scholar
  24. Legout A, Walter C, Nys C (2008) Spatial variability of nutrient stocks in the humus and soils of a forest massif (Fougères, France). Ann Sci 65:108CrossRefGoogle Scholar
  25. Mankovska B, Bodzik B, Badea O, Shparyk Y, Moravcik P (2004) Chemical and morphological characteristics of key tree species of the Carpathian Mountains. Environ Pollut 130:41–54. doi: 10.1016/j.envpol.2003.10.020 PubMedCrossRefGoogle Scholar
  26. Morris DM, Gordon AG, Gordon AM (2003) Patterns of canopy interception and throughfall along a topographic sequence for black spruce dominated forest ecosystem in northwestern Ontario. Can J For Res 33:1046–1060. doi: 10.1139/x03-027 CrossRefGoogle Scholar
  27. Newman EL (1995) Phosphorus inputs to terrestrial ecosystems. J Ecol 83:713–726. doi: 10.2307/2261638 CrossRefGoogle Scholar
  28. Peters M (1990) Nutzungseinfluss auf die Stoffdynamik schleswig-holsteinischer Böden – Wasser-, Luft-, Nähr- und Schadstoffdynamik. Dissertation, Institut für Pflanzenernährung und Bodenkunde der Christian-Albrecht-Universität zu Kiel (in German)Google Scholar
  29. Qualls RG, Haines BL, Swank WT, Tyler SW (2002) Retention of soluble organic nutrients by a forested ecosystem. Biogeochemistry 61:135–171. doi: 10.1023/A:1020239112586 CrossRefGoogle Scholar
  30. Stefan K, Fürst A, Hacker R, Bartels U (1997) Forest foliar condition in Europe—results of large-scale foliar chemistry survey 1995. Forest Foliar Co-ordinating Centre, ViennaGoogle Scholar
  31. Sverdrup H, Thelin G, Robles M, Stjernquist I, Sörensen J (2006) Assessing nutrient sustainability of forest production for different tree species considering Ca, Mg, K, N and P at Björnstorp Estate, Sweden. Biogeochemistry 81:219–238. doi: 10.1007/s10533-006-9038-2 CrossRefGoogle Scholar
  32. UNECE, United Nations Economic Commission for Europe Convention and Long-range Transboundary Air Pollution (2007) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. International co-operative programme on assessment and monitoring of air Pollution effects on forests. HamburgGoogle Scholar
  33. Wolff B, Riek W (1997) Deutscher Waldbodenbericht Deutscher Waldbodenbericht. Bundesministerium für Ernährung, Landwirtschaft und Forsten, Bonn (in German)Google Scholar
  34. Zha T, Wang KY, Ryyppö A, Kellomäki S (2002) Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature. Tree Physiol 22:1241–1248PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of Forest Ecology and Forest InventoryJohann Heinrich von Thünen Institute (Federal Research Institute for Rural Areas, Forestry and Fisheries)EberswaldeGermany

Personalised recommendations