Advertisement

European Journal of Forest Research

, Volume 129, Issue 5, pp 887–897 | Cite as

Propagating the errors of initial forest variables through stand- and tree-level growth simulators

  • Antti MäkinenEmail author
  • Markus Holopainen
  • Annika Kangas
  • Jussi Rasinmäki
Original Paper

Abstract

Developments in the field of remote sensing have led to various cost-efficient forest inventory methods at different levels of detail. Remote-sensing techniques such as airborne laser scanning (ALS) and digital photogrammetry are becoming feasible alternatives for providing data for forest planning. Forest-planning systems are used to determine the future harvests and silvicultural operations. Input data errors affect the forest growth projections and these effects are dependent on the magnitude of the error. Our objective in this study was to determine how the errors typical to different inventory methods affect forest growth projections at individual stand level during a planning period of 30 years. Another objective was to examine how the errors in input data behave when different types of growth simulators are used. The inventory methods we compared in this study were stand-wise field inventory and single-tree ALS. To study the differences between growth models, we compared two forest simulators consisting of either distance-independent tree-level models or stand-level models. The data in this study covered a 2,000-ha forest area in southern Finland, including 240 sample plots with individually measured trees. The analysis was conducted with Monte Carlo simulations. The results show that the tree-level simulator is less sensitive to errors in the input data and that by using single-tree ALS data, more precise growth projections can be obtained than using stand-wise field inventory data.

Keywords

Forest planning Remote sensing Uncertainty Monte Carlo method 

References

  1. Barth A, Lind T, Petersson H, Ståhl G (2006) A framework for evaluating data acquisition strategies for analyses of sustainable forestry at national level. Scand J For Res 21:94–105CrossRefGoogle Scholar
  2. Borders BE, Harrison WM, Clutter ML, Shiver BD, Souter RA (2008) The value of timber inventory information for management planning. Can J For Res 38:2287–2294CrossRefGoogle Scholar
  3. Burkhart H (2003) Suggestions for choosing an appropriate level for modeling forest stands. In: Amaro A, Reed D, Soares P (eds) Modelling forest systems. CABI Publishing, Oxfordshire, p 398Google Scholar
  4. Canavan SJ, Hann DW (2004) The two-stage method for measurement error characterization. For Sci 50(6):743–756Google Scholar
  5. Duvemo K, Lämås T (2006) The influence of forest data quality on planning processes in forestry. Scand J For Res 21:327–339CrossRefGoogle Scholar
  6. Eid T (2000) Use of uncertain inventory data in forestry scenario models and consequential incorrect harvest decisions. Silva Fenn 34:89–100Google Scholar
  7. Eid T, Gobakken T, Næsset E (2004) Comparing stand inventories for large areas based on photo interpretation and laser scanning by means of cost-plus-loss analyses. Scand J For Res 19:512–523CrossRefGoogle Scholar
  8. Gertner G, Dzialowy PJ (1984) Effects of measurement errors on an individual tree-based growth projection system. Can J For Res 14:311–316CrossRefGoogle Scholar
  9. Haara A (2003) Comparing simulation methods for modelling the errors of stand inventory data. Silva Fenn 37(4):477–491Google Scholar
  10. Holmgren J, Nilsson M, Olsson H (2003) Estimation of tree height and stem volume on plots using airborne laser scanning. For Sci 49:419–428Google Scholar
  11. Holmström H, Kallur H, Ståhl G (2003) Cost-plus-loss analyses of forest inventory strategies based on kNN-assigned reference sample plot data. Silva Fenn 37(3):381–398Google Scholar
  12. Holopainen M, Talvitie M (2006) Effect of data acquisition accuracy on timing of stand harvests and expected net present value. Silva Fenn 40(3):531–543Google Scholar
  13. Hynynen J, Ojansuu R, Hökkä H, Siipilehto J, Salminen H, Haapala P (2002) Models for predicting stand development in MELA system. Research Paper 835. Finnish Forest Research Institute, VantaaGoogle Scholar
  14. Hyvän metsänhoidon suositukset (2006) Metsätalouden kehittämiskeskus Tapio. Metsäkustannus Oy, Helsinki, p 100 in FinnishGoogle Scholar
  15. Juntunen R (2006) Puustotiedon laadun vaikutus metsän käsittelyn optimoinnin tuloksiin—UPM Metsän laserkeilausaineiston ja kuviotiedon vertailu. Master’s thesis, Helsinki University Department of Forest Economics, 87 p (in Finnish)Google Scholar
  16. Kaartinen H, Hyyppä J (2008) EuroSDR-Project Commission 2, “tree extraction”, final report. EuroSDR - European Spatial Data Research, Dublin (official publication) (in press)Google Scholar
  17. Kalliovirta J, Tokola T (2005) Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information. Silva Fenn 39(2):227–248Google Scholar
  18. Kangas A (1997) On the prediction bias and variance in long-term growth projections. For Ecol Manage 96:207–216CrossRefGoogle Scholar
  19. Kangas A (1999) Methods for assessing uncertainty of growth and yield predictions. Can J For Res 29:1357–1364CrossRefGoogle Scholar
  20. Kangas A, Heikkinen E, Maltamo M (2004) Accuracy of partially visually assessed stand characteristics: a case study of Finnish forest inventory by compartments. Can J For Res 34:916–930CrossRefGoogle Scholar
  21. Korpela I (2004) Individual tree measurements by means of digital aerial photogrammetry. Silva Fenn Monogr 3:93Google Scholar
  22. Laasasenaho J, Päivinen R (1986) On the checking of inventory by compartments. Folia For 664:19 (in Finnish)Google Scholar
  23. Mäkinen A, Kangas A, Kalliovirta J, Rasinmäki J, Välimäki E (2008) Comparison of treewise and standwise forest simulators by means of quantile regression. For Ecol Manage 255:2709–2717CrossRefGoogle Scholar
  24. Maltamo M, Eerikäinen K, Pitkänen J, Hyyppä J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens Environ 90:319–330CrossRefGoogle Scholar
  25. Maltamo M, Malinen J, Packalén P, Suvanto A, Kangas J (2006) Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data. Can J For Res 36:426–436CrossRefGoogle Scholar
  26. Mielikäinen K (1985) Koivusekoituksen vaikutus kuusikon rakenteeseen ja kehitykseen. Summary: effect of an admixture of birch on the structure and development of Norway spruce stands. Commun Inst For Fenn 133:1–79 in Finnish with English summaryGoogle Scholar
  27. Mowrer HT (1991) Estimating components of propagated variance in growth simulation model projections. Can J For Res 21:379–386CrossRefGoogle Scholar
  28. Mowrer HT (2000) Uncertainty in natural resource decision support systems: sources, interpretation, and importance. Comput Electron Agric 27:139–154CrossRefGoogle Scholar
  29. Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99CrossRefGoogle Scholar
  30. Oikarinen M (1983) EteläSuomen viljeltyjen rauduskoivikoiden kasvumallit. Commun Inst For Fenn 113:75 (in Finnish)Google Scholar
  31. Poso S (1983) Basic features of inventory by compartments. Silva Fenn 17:313–349 in FinnishGoogle Scholar
  32. Rasinmäki J, Kalliovirta J, Mäkinen A (2009) SIMO: an adaptable simulation framework for multiscale forest resource data. Comput Electron Agric 66:76–84CrossRefGoogle Scholar
  33. Salminen H, Lehtonen M, Hynynen J (2005) Reusing legacy FORTRAN in the MOTTI growth and yield simulator. Comput Electron Agric 49:103–113CrossRefGoogle Scholar
  34. Saramäki J (1977) Ojitettujen turvemaiden hieskoivikoiden kehitys Kainuussa ja Pohjanmaalla. Metsäntutkimuslaitoksen julkaisuja 91(2) (in Finnish)Google Scholar
  35. Sironen S, Kangas A, Maltamo M, Kalliovirta J (2008) Localization of growth estimates using non-parametric imputation methods. Fore Ecol Manage 256(4):674–684CrossRefGoogle Scholar
  36. Tokola T, Kangas A, Kalliovirta J, Mäkinen A, Rasinmäki J (2006) SIMO—SIMulointi ja Optimointi uuteen metsäsuunnitteluun. Metsätieteen Aikak 1:60–65 in FinnishGoogle Scholar
  37. Vuokila Y, Väliaho H (1980) Viljeltyjen havumetsiköiden kasvumallit. Metsäntutkimuslaitoksen julkaisuja 99(2) (in Finnish)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Antti Mäkinen
    • 1
    Email author
  • Markus Holopainen
    • 1
  • Annika Kangas
    • 1
  • Jussi Rasinmäki
    • 1
  1. 1.Department of Forest Resource ManagementUniversity of HelsinkiHelsinkiFinland

Personalised recommendations