Genetic variability of Italian southern Scots pine (Pinus sylvestris L.) populations: the rear edge of the range

  • Marta ScalfiEmail author
  • Andrea Piotti
  • Massimo Rossi
  • Paolo Piovani
Original Paper


Understanding the genetic structure and diversity of edge populations can shed light on the role of peripheral populations and their relevance for conservation strategies. In this study, three fragmented and isolated Apennine populations of Scots pine (Pinus sylvestris L.) belonging to the rear edge of the species’ distribution were analyzed using both nuclear (nSSR) and chloroplast (cpSSR) microsatellites and were compared with an Alpine population belonging to the species’ main range. Although small population size and considerable isolation have probably reduced the genetic variability of Apennine populations, these fragmented populations maintain a high level of within-population genetic diversity. A significant among-population differentiation was found using both nSSR (F ST = 0.08) and cpSSR markers (ρ = 0.14). Analysis of molecular variance (AMOVA) on the nSSRs attributed all variabilities to the among Apennine populations component supporting the theoretical predictions regarding fragmentation effects on genetic structure. On the other hand, AMOVA on the cpSSRs attributed all variances to the between-region component and no differentiation was found within region, among the Apennine populations. This result suggests the importance of pollen gene flow in homogenizing populations on this geographical scale. Our results confirm the genetic distinctiveness of Apennine populations and their possible derivation from different glacial refugia than those of the Alps. Considering their peculiarity and the high level of intrapopulation genetic diversity that they still retain, fragmented Apennine populations should be considered of high priority for conservation.


Range limits Scots pine Fragmentation Postglacial recolonization Genetic differentiation Gene flow Microsatellite markers 



This research was supported by the project “Analisi genetica della popolazione di pino silvestre presente nel Parco storico di Monte Sole” from Parco Storico di Monte Sole. We wish to thank G. Maresi and B. Storti for help during field sampling, the members of Parco storico di Monte Sole for logistic support, M. Tomasi-Cormac and T. Say for correcting the English, S. Leonardi and P. Menozzi for suggestions and comments that improved the manuscript and two anonymous reviewers for their helpful comments and suggestions.


  1. Accorsi CA, Bandini Mazzanti M, Bertolani Marchetti D, De Leonardis W, Forlani L, Piccione V (1983) Flora Palinologica Italiana. Schede elaborate tramite computer. Arch Bot Biogeogr Ital 59:55–104Google Scholar
  2. Afzal-Rafii Z, Dodd RS (2007) Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in western Europe. Mol Ecol 16:723–736. doi: 10.1111/j.1365-294X.2006.03183.x PubMedCrossRefGoogle Scholar
  3. Agostini R (1972) Significato e lineamenti delle pinete relitte di pino silvestre (Pinus sylvestris L.) dell’Apennino Emiliano. Acc Ital Sci For 21:171–212Google Scholar
  4. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980. doi: 10.1111/j.1461-0248.2006.00927.x PubMedCrossRefGoogle Scholar
  5. Antonaroli R, Bagnaresi U, Ferrari C, Speranza M (1987) Indagine su alcuni caratteri morfologici del pino silvestre (Pinus sylvestris L.) in popolamenti spontanei dell’Appenino emiliano. Acc Ital Sci For 34:151–160Google Scholar
  6. Arnaud-Haond S, Teixeira S, Massa SI, Billot C, Saenger P, Coupland G, Duarte CM, Serrão EA (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525. doi: 10.1111/j.1365-294X.2006.02997.x PubMedCrossRefGoogle Scholar
  7. Bacles CFE, Lowe AJ, Ennos RA (2004) Genetic effects of chronic habitat fragmentation on tree species: the case of Sorbus aucuparia in a deforested Scottish landscape. Mol Ecol 13:573–584. doi: 10.1046/j.1365-294X.2004.02093.x PubMedCrossRefGoogle Scholar
  8. Baucom RS, Estill JC, Cruzan MB (2005) The effect of deforestation on the genetic diversity and structure in Acer saccharum (Marsh): evidence for the loss and restructuring of genetic variation in a natural system. Conserv Genet 6:39–50. doi: 10.1007/s10592-004-7718-9 CrossRefGoogle Scholar
  9. Bazzi R (1984) Indagini palinologiche su Pinus sylvestris L. subsp. sylvestris, ecotipo emiliano. Tesi di laurea in Scienze Naturali. University of Bologna (A.A. 1984–1985)Google Scholar
  10. Bernetti G (1995) Selvicoltura speciale. Unione tipografico-editrice Torinese, Torino, pp 124–131Google Scholar
  11. Bilgen BB, Kaya N (2007) Allozyme variations in six natural populations of scots pine (Pinus sylvestris) in Turkey. Biologia 62:697–703. doi: 10.2478/s11756-007-0127-z CrossRefGoogle Scholar
  12. Burczyk J, Lewandowski A, Chalupa W (2004) Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). For Ecol Manag 197:39–48. doi: 10.1016/j.foreco.2004.05.003 CrossRefGoogle Scholar
  13. Cheddadi R, Vendramin GG, Litt T, Francois L, Kageyama M, Lorentz S, Laurent JM, deBeaulieu JL, Sadori L, Jost A, Lunt D (2006) Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob Ecol Biogeogr 15:271–282Google Scholar
  14. Comps B, Gomory D, Letouzey J, Thiebaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397PubMedGoogle Scholar
  15. Cornuet JM, Luikart G (1996) Description and evaluation of two tests for detecting recent bottlenecks. Genetics 144:2001–2014PubMedGoogle Scholar
  16. Dick CW, Abdul-Salim K, Bermingham E (2003) Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. Am Nat 162:691–703. doi: 10.1086/379795 PubMedCrossRefGoogle Scholar
  17. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  18. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  19. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839. doi: 10.1007/BF00221895 CrossRefGoogle Scholar
  20. Fady B, Lefèvre F, Vendramin GG, Ambert A, Regnier C, Bariteau M (2008) Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conserv Genet 9(1):85–95. doi: 10.1007/s10592-007-9310-6 CrossRefGoogle Scholar
  21. Ferrazzini D, Monteleone I, Belletti P (2008) Small-scale genetic diversity in oneseed hawthorn (Crataegus monogyna Jacq.). Eur J For Res 127(5):407–414. doi: 10.1007/s10342-008-0224-8 Google Scholar
  22. Gapare WJ, Aitken SN (2005) Strong spatial genetic structure in peripheral but not core populations of Sitka spruce [Picea sitchensis (Bong.) Carr]. Mol Ecol 14:2659–2667. doi: 10.1111/j.1365-294X.2005.02633.x PubMedCrossRefGoogle Scholar
  23. Goncharenco GG, Silin AE, Paddutov VE (1994) Allozyme variation in natural populations of Eurasian Pines. Silvae Genet 43:119–132Google Scholar
  24. Gonzalez-Martinez SC, Bravo F (2001) Density and population structure of the natural regeneration of Scots pine (Pinus sylvestris L.) in the High Ebro Basin (Northern Spain). Ann Sci 58:277–288. doi: 10.1051/forest:2001126 CrossRefGoogle Scholar
  25. Gonzalez-Martinez SC, Gerber S, Cervera MT, Martinez-Zapater JM, Gil L, Alia R (2002) Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theor Appl Genet 104:1290–1297. doi: 10.1007/s00122-002-0894-4 PubMedCrossRefGoogle Scholar
  26. Gonzalez-Martinez SC, Burczyk J, Nathan R, Nanos N, Gil L, Alia R (2006) Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton). Mol Ecol 15:4577–4588. doi: 10.1111/j.1365-294X.2006.03118.x PubMedCrossRefGoogle Scholar
  27. Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245:477–480. doi: 10.1126/science.245.4917.477 PubMedCrossRefGoogle Scholar
  28. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467. doi: 10.1111/j.1461-0248.2005.00739.x CrossRefGoogle Scholar
  29. Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manag 197:323–335. doi: 10.1016/j.foreco.2004.05.023 CrossRefGoogle Scholar
  30. Hewitt GM (2004) Genetic consequences of climatic changes in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195. doi: 10.1098/rstb.2003.1388 PubMedCrossRefGoogle Scholar
  31. Honnay H, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831. doi: 10.1111/j.1523-1739.2006.00646.x PubMedCrossRefGoogle Scholar
  32. Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, CambridgeGoogle Scholar
  33. Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020. doi: 10.1111/j.1461-0248.2005.00796.x CrossRefGoogle Scholar
  34. Jump AS, Penuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103:8096–8100. doi: 10.1073/pnas.0510127103 PubMedCrossRefGoogle Scholar
  35. Kalinowsky ST (2005) Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity 94:33–36. doi: 10.1038/sj.hdy.6800548 CrossRefGoogle Scholar
  36. Kirby GC (1975) Heterozygote frequencies in small populations. Theor Popul Biol 8:31–48. doi: 10.1016/0040-5809(75)90037-4 PubMedCrossRefGoogle Scholar
  37. Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885. doi: 10.1111/j.1523-1739.2008.00944.x PubMedCrossRefGoogle Scholar
  38. Labra M, Grassi F, Sgorbati S, Ferrari C (2006) Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Apennines. Flora 201:468–476Google Scholar
  39. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460. doi: 10.1126/science.3420403 PubMedCrossRefGoogle Scholar
  40. Lemes MR, Gribel R, Proctor J, Grattapaglia D (2003) Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservation. Mol Ecol 12:2875–2883. doi: 10.1046/j.1365-294X.2003.01950.x PubMedCrossRefGoogle Scholar
  41. Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189. doi: 10.1016/S0169-5347(02)02497-7 CrossRefGoogle Scholar
  42. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation. Conserv Biol 9:753–760. doi: 10.1046/j.1523-1739.1995.09040753.x CrossRefGoogle Scholar
  43. Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273. doi: 10.1038/sj.hdy.6800725 PubMedCrossRefGoogle Scholar
  44. Miyamoto N, Fernandez-Manjarres JF, Morand-Prieur ME, Bertolino P, Frascaria-Lacoste N (2008) What sampling is needed for reliable estimations of genetic diversity in Fraxinus excelsior L. (Oleaceae). Ann Sci 65:403–410CrossRefGoogle Scholar
  45. Muir G, Lowe AJ, Fleming CC, Vogl C (2004) High nuclear genetic diversity, high levels of outcrossing and low differentiation among remnant populations of Quercus petraea at the margin of its range in Ireland. Ann Bot (Lond) 93:691–697. doi: 10.1093/aob/mch096 CrossRefGoogle Scholar
  46. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788. doi: 10.1126/science.1124975 PubMedCrossRefGoogle Scholar
  47. Naydenov K, Senneville S, Beaulieu J, Tremblay F, Bousquet J (2007) Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evol Biol 7:233–244. doi: 10.1186/1471-2148-7-233 PubMedCrossRefGoogle Scholar
  48. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  49. Nybon H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155. doi: 10.1111/j.1365-294X.2004.02141.x CrossRefGoogle Scholar
  50. O’Connell LM, Mosseler A, Rajora OP (2006) Impacts of forest fragmentation on the mating system and genetic diversity of white spruce (Picea glauca) at the landscape level. Heredity 97:418–426. doi: 10.1038/sj.hdy.6800886 PubMedCrossRefGoogle Scholar
  51. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  52. Pearl M (1992) Conservation of Asian primates: aspects of genetics and behavioral ecology that predict vulnerability. In: Fiedler PL, Jain SK (eds) Conservation biology: the theory and practice of nature conservation preservation and management. Chapman and Hall, New York, pp 297–320Google Scholar
  53. Persson H, Widen B, Andersson S, Svensson L (2004) Allozyme diversity and genetic structure of marginal and central populations of Corylus avellana L. (Betulaceae) in Europe. Plant Syst Evol 244:157–179. doi: 10.1007/s00606-003-0073-3 CrossRefGoogle Scholar
  54. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855. doi: 10.1046/j.1523-1739.1998.96489.x CrossRefGoogle Scholar
  55. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565. doi: 10.1126/science.1083264 PubMedCrossRefGoogle Scholar
  56. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  57. Provan J, Soranzo N, Wilson NJ, McNicol JW, Forrest GI, Cottrell J, Powell W (1998) Gene-pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats. P R Soc Lond B Biol 265:1697–1705. doi: 10.1098/rspb.1998.0491 CrossRefGoogle Scholar
  58. Prus-Glowacki B, Stephan BR, Bujas E, Alia R, Marciniak A (2003) Genetic differentiation of autochtonous populations of Pinus sylvestris (Pinaceae) from the Iberian Peninsula. Plant Syst Evol 239:55–66. doi: 10.1007/s00606-002-0256-3 CrossRefGoogle Scholar
  59. Puglisi S, Attolico M (2000) Allozyme variation in natural populations of the Italian range of Pinus sylvestris L. For Genet 7:221–232Google Scholar
  60. Pyhäjärvi T, Garcia-Gil MR, Knurr T, Mikkonen M, Wachowiak W, Savolainen O (2007) Demographic history has influenced nuclear diversity in european Pinus sylvestris populations. Genetics 177:1713–1724. doi: 10.1534/genetics.107.077099 PubMedCrossRefGoogle Scholar
  61. Pyhäjärvi T, Salmela MJ, Savolainen O (2008) Colonization routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation. Tree Genet Genomes 4:247–254. doi: 10.1007/s11295-007-0105-1 CrossRefGoogle Scholar
  62. Reed DH, Lowe EH, Briscoe DA, Frankham R (2003) Inbreeding and extinction: effects of rate of inbreeding. Conserv Genet 4:405–410. doi: 10.1023/A:1024081416729 CrossRefGoogle Scholar
  63. Robledo Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94:13–22. doi: 10.1038/sj.hdy.6800542 PubMedCrossRefGoogle Scholar
  64. Robledo Arnuncio JJ, Collada C, Alia R, Gil L (2005) Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J Biogeogr 32:595–605. doi: 10.1111/j.1365-2699.2004.01196.x CrossRefGoogle Scholar
  65. Rossetto M, Jones R, Hunter J (2004) Genetic effects of rainforest fragmentation in an early successional tree (Elaeocarpus grandis). Heredity 93:610–618. doi: 10.1038/sj.hdy.6800585 PubMedCrossRefGoogle Scholar
  66. Schaal BA, Hayworth DA, Olsen KM, Rauscher JT (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474. doi: 10.1046/j.1365-294x.1998.00318.x CrossRefGoogle Scholar
  67. Sinclair WT, Morman JD, Ennos RA (1999) The postglacial history of Scots pine (Pinus sylvestris L.) in Western Europe: evidence from mitochondrial DNA variation. Mol Ecol 8:83–88. doi: 10.1046/j.1365-294X.1999.00527.x CrossRefGoogle Scholar
  68. Soranzo N, Provan J, Powell W (1998) Characterization of microsatellite loci in Pinus sylvestris L. Mol Ecol 7:1260–1261PubMedGoogle Scholar
  69. Soranzo N, Alia R, Provn J, Powell W (2000) Patterns of variation at a mitochondrial sequence-tagged site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol Ecol 9:1205–1211. doi: 10.1046/j.1365-294x.2000.00994.x PubMedCrossRefGoogle Scholar
  70. Stevens G (1992) Spilling over the competitive limits to species coexistence. In: Edlridge N (ed) Systematics, ecology, and the biodiversity crisis. Columbia University Press, New York, pp 40–58Google Scholar
  71. Turna I (2003) Variation of some morphological and electrophoretic characters of 11 populations of Scot pine in Turkey. Isr J Plant Sci 51:223–230. doi: 10.1560/M4RX-QBGM-JVYQ-74B8 CrossRefGoogle Scholar
  72. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  73. Vander Wall SB (2003) Effects of seed size of wind-dispersed pines (Pinus) on secondary seed dispersal and the caching behavior of rodents. Oikos 100:25–34. doi: 10.1034/j.1600-0706.2003.11973.x CrossRefGoogle Scholar
  74. Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598. doi: 10.1111/j.1365-294X.1996.tb00353.x PubMedCrossRefGoogle Scholar
  75. Vendramin GG, Anzidei M, Madaghiele A, Bucci G (1998) Distribution of genetic diversity in Pinus pinaster Ait. As revealed by chloroplast microsatellites. Theor Appl Genet 97:456–463. doi: 10.1007/s001220050917 CrossRefGoogle Scholar
  76. Vucetich JA, Waite TA (2003) Spatial patterns of demography and genetic processes across the species range: null hypotheses for landscape conservation genetics. Conserv Genet 4:639–645. doi: 10.1023/A:1025671831349 CrossRefGoogle Scholar
  77. Ward M, Dick CW, Gribel R, Lowe AJ (2005) To self, or not to self… A review of outcrossing and pollen mediated gene flow in neotropical tree. Heredity 94:246–254. doi: 10.1038/sj.hdy.6800712 CrossRefGoogle Scholar
  78. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38:1358–1370. doi: 10.2307/2408641 Google Scholar
  79. Williams DA, Wang YQ, Borchetta M, Gaines MS (2007) Genetic diversity and spatial structure of a keystone species in fragmented pine rockland habitat. Biol Conserv 138:256–268. doi: 10.1016/j.biocon.2007.04.024 CrossRefGoogle Scholar
  80. Wolf CM, Griffith B, Reed C, Temple SA (1996) Avian and mammalian translocations: update and reanalysis of 1987 survey data. Conserv Biol 10:1142–1153. doi: 10.1046/j.1523-1739.1996.10041142.x CrossRefGoogle Scholar
  81. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058. doi: 10.1073/pnas.84.24.9054 PubMedCrossRefGoogle Scholar
  82. Young A, Boyle T, Brown AHD (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. doi: 10.1016/0169-5347(96)10045-8 CrossRefGoogle Scholar
  83. Young AG, Brown AHD, Zich FA (1999) Genetic structure of fragmented populations of the endangered daisy Rutidosis leptorrhynchoides. Conserv Biol 13:256–265. doi: 10.1046/j.1523-1739.1999.013002256.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Marta Scalfi
    • 1
    Email author
  • Andrea Piotti
    • 1
  • Massimo Rossi
    • 2
  • Paolo Piovani
    • 1
  1. 1.Department of Environmental SciencesUniversity of ParmaParmaItaly
  2. 2.Parco Storico di Monte SoleMarzabotto (BO)Italy

Personalised recommendations