A novel application of the ecological field theory to the definition of physiographic and climatic potential areas of forest species

  • Rafael Alonso Ponce
  • Eduardo López Senespleda
  • Otilio Sánchez Palomares
Original Paper

Abstract

A new approach to the definition of physiographic and climatic potential areas for forest species, based on the ecological field theory, is outlined in this paper. The proposed formulation is tested on the Spanish juniper (Juniperus thurifera L.), using data from 883 permanent and temporary plots throughout its distribution area in the Spanish autonomous region of Castilla y León. The suitability of the territory for the species is assessed by previously studying its habitat, which in turn is analyzed through physiographic and climatic parameters. This new method is rooted in an additive index that depends on the Mahalanobis distance in the parametric space that evaluates the ecological resemblance between the studied site and each of the points defining the parametric habitat. Thereby the ecological potential of any site within the territory can be established, integrated in a geographical information systems and accordingly charted. The results are compared with those obtained with the methodology traditionally used by Spanish foresters (factorial index), showing that the overall potential area is similar in size but quite different in its distribution.

Keywords

Ecological potential Mahalanobis’ distance Juniperus thurifera Autecology 

References

  1. Alonso Ponce R (2008) Autoecología paramétrica de Juniperus thurifera L. en Castilla y León. Tesis Doctoral, Universidad Politécnica de Madrid, MadridGoogle Scholar
  2. Anderson RP, Lew D, Townsend A (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232CrossRefGoogle Scholar
  3. Benito Garzón M, Blazek R, Neteler M, Sánchez de Dios R, Sáinz H, Furlanello C (2006) Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecol Model 197:383–393CrossRefGoogle Scholar
  4. Busby JR (1991) BIOCLIM—A bioclimate analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, MelbourneGoogle Scholar
  5. Carpenter G, Gillinson AN, Winter J (1993) DOMAIN: a flexible modeling procedure for mapping potential distributions of plants, animals. Biodivers Conserv 2:667–680CrossRefGoogle Scholar
  6. Charnet F (2001) Utilisation des données de l’IFN pour les études stationnelles et autécologiques: expériences et perspectives. Revue Forestière Française 53(3/4):372–377Google Scholar
  7. Cisneros Ó (2004) Autoecología del cerezo de monte (Prunus avium L.) en Castilla y León. Tesis Doctoral, Universidad Politécnica de Madrid, MadridGoogle Scholar
  8. Costa Tenorio M, Gómez F, Morla C, Sáinz H (1996) Del tratamiento geobotánico y fitosociológico de los sabinares albares españoles. Anales del Jardín Botánico de Madrid 4:490–503Google Scholar
  9. Costa Tenorio M, Morla C, Sáinz H (1997) Los bosques ibéricos. Planeta, BarcelonaGoogle Scholar
  10. Edenius L, Mikusiński G (2006) Utility of habitat suitability models as biodiversity assessment tools in forest management. Scan J For Res 21:62–72CrossRefGoogle Scholar
  11. Feagin RA, Wu XB, Smeins FE, Whisenant SG, Grant WE (2005) Individual versus community level processes and pattern formation in a model of sand dune plant succession. Ecol Model 183(4):435–449CrossRefGoogle Scholar
  12. Felicísimo AM, Francés E, Fernández JM, González Díez A, Varas J (2002) Modelling the potential distribution of forest with a GIS. Photogramm. Eng Remote Sens 68:455–461Google Scholar
  13. Fernández C, Acosta FJ, Abellá G, López F, Díaz M (2002) Complex edge effect fields as additive processes in patches of ecological systems. Ecol Model 149:273–283CrossRefGoogle Scholar
  14. Gandullo JM (1974) Ensayo de la evaluación cuantitativa de la insolación en función de la orientación y de la pendiente del terreno. Anales INIA. Serie Recursos Naturales 1:95–107Google Scholar
  15. Gandullo JM (1997) Implicaciones térmicas de la topografía: ensayo de un parámetro termotopográfico. Invest Agrar Sist Recur For 6(1/2):7–15Google Scholar
  16. Gandullo JM, Sánchez Palomares O (1994) Estaciones ecológicas de los pinares españoles. ICONA, MadridGoogle Scholar
  17. Gandullo JM, González S, Sánchez O (1974) Ecología de los pinares españoles IV Pinus radiata D. Don.. INIA, MadridGoogle Scholar
  18. García López JM, Allué C (2003) Aplicación de la teoría de la envolvente convexa a la mejora del sistema fitoclimático Allué-Andrade. Ecología 17:329–343Google Scholar
  19. Gauquelin T, Dagnac J (1988) Caractéristiques édaphiques des groupements à genévrier thurifère des Atlas marocains: étude des niveaus superficiels des sols sous couvert et hors couvert. Oecologia Mediterranea 14(3–4):43–56Google Scholar
  20. Gauquelin T, Bertaudiere V, Montes N, Badri W, Asmode JF (1999) Endangered stands of thuriferous juniper in the western Mediterranean basin: ecological status, conservation and management. Biodivers Conserv 8:1479–1498CrossRefGoogle Scholar
  21. Gégout JC (2001) Création d’une base de données phytoécologiques pour déterminer l’autoécologie des espèces de la flore forestière de France. Revue Forestière Française 53(3/4):397–403Google Scholar
  22. Guisan A, Thuiller W (2005) Predicting species distributions: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  23. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186CrossRefGoogle Scholar
  24. Legendre P, Legendre L (1998) Numerical ecology. 2nd english edn. Elsevier Science, AmsterdamGoogle Scholar
  25. Li BL, Wu H-I, Zou G (2000) Self-thinning rule: a causal interpretation from ecological field theory. Ecol Model 132(1–2):167–173CrossRefGoogle Scholar
  26. López Senespleda E, Sánchez Palomares O, Roig S (2006) Informe final del convenio INIA-DGB para la realización de trabajos en materia de investigación de tipificaciones ecológico selvícolas: Quercus faginea Lamk, INIA, MadridGoogle Scholar
  27. Miina J, Pukkala T (2002) Application of ecological field theory in distance-dependent growth modelling. For Ecol Manag 161(1/3):101–107CrossRefGoogle Scholar
  28. Montero G, Sánchez Palomares O, Del Río M, Roig S, Cañellas I, Calama R (2006) Informe final del convenio entre el INIA y la Junta de Castilla y León: Estudio autoecológico y modelos de gestión de los rebollares (Quercus pyrenaica Willd.) y de normas selvícolas para Pinus pinea L., P. sylvestris L., P. pinaster Ait. y P. nigra Arn. en Castilla y LeónGoogle Scholar
  29. Nakagiri N, Tainaka K (2004) Indirect effects of habitat destruction in model ecosystems. Ecol Model 174(1–2):103–114CrossRefGoogle Scholar
  30. Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España. ICONA, MadridGoogle Scholar
  31. Robertson MP, Peter CI, Villet MH, Ripley BS (2003) Comparing models for predicting species’ potential distributions: a case study using correlative and mechanistic predictive modelling techniques. Ecol Model 164:153–167CrossRefGoogle Scholar
  32. Rubio A, Sánchez Palomares O (2006) Physiographic and climatic potential areas for Fagus sylvatica L. based on habitat suitability indicator models. Forestry 79(4):439–451CrossRefGoogle Scholar
  33. Rubio A, Elena R, Sánchez Palomares O, Blanco A, Sánchez F, Gómez V (2002) Soil evaluation for Castanea sativa afforestation in Northeastern Spain. New Forest 23:131–141CrossRefGoogle Scholar
  34. Sánchez Palomares O (2001) Los estudios autoecológicos paramétricos de especies forestales. Modelos digitales. In: SECF-Junta de Andalucía (ed), Actas del III Congreso Forestal Español. Montes para la sociedad del nuevo milenio. Coria Gráficas. SevillaGoogle Scholar
  35. Sánchez Palomares O, Sánchez Serrano F, Carretero MP (1999) Modelos y cartografía de estimaciones climáticas termopluviométricas para la España peninsular. INIA, MadridGoogle Scholar
  36. Sánchez Palomares O, Rubio A, Blanco A (2004) Definición y cartografía de las áreas potenciales fisiográfico-climáticas de hayedo en España. Invest Agrar Sist Recur For Fuera de serie:13–62Google Scholar
  37. Sarmiento LA (2005) Autoecología paramétrica de los alcornocales (Quercus suber L.) extremeños. Tesis doctoral, Universidad Politécnica de Madrid, MadridGoogle Scholar
  38. Serrada R (2005) La calidad de las repoblaciones forestales y repoblaciones forestales de calidad. In: IV Congreso Forestal Español, ZaragozaGoogle Scholar
  39. Siipilehto J (2006) Height distributions of Scots pine sapling stands affected by retained tree and edge stand competition. Silva Fenn 40(3):473–486Google Scholar
  40. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balances. Climatology 10:181–311Google Scholar
  41. Vázquez A, Pérez B, Fernández González F, Moreno JM (2002) Recent fire regime characteristics and potential natural vegetation relationship in Spain. J Veg Sci 13:663–673CrossRefGoogle Scholar
  42. Vernet JL, Vernet Ph (1966) Sur un indice bioclimatique applicable aux climats de la France. Natur. Monsp. Serie Botanique 17:253–261Google Scholar
  43. Walker PA, Cocks KD (1991) HABITAT: a procedure for modelling a disjoint environmental envelope for a plant or animal species. Global Ecol Biogeogr 1:108–118CrossRefGoogle Scholar
  44. Walker J, Sharpe PJH, Penridge LK, Wu H (1989) Ecological field theory: the concept and field tests. Vegetatio 83:81–95CrossRefGoogle Scholar
  45. Walter H, Lieth H (1960) Klimadiagramm Weltatlas. Gustav Fischer, JenaGoogle Scholar
  46. Wu H, Sharpe PJH, Walker J, Penridge LK (1985) Ecological field theory: a spatial analysis of resource interference among plants. Ecol Model 29:215–243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Rafael Alonso Ponce
    • 1
  • Eduardo López Senespleda
    • 2
  • Otilio Sánchez Palomares
    • 2
  1. 1.Departamento de Investigación y Experiencias Forestales ValonsaderoJunta de Castilla y LeónSoriaSpain
  2. 2.Unidad de Ecología Forestal. CIFOR- INIAMadridSpain

Personalised recommendations