Carbon dioxide fluxes across the Sierra de Guadarrama, Spain

  • R. Inclán
  • C. Uribe
  • D. De La Torre
  • D. M. Sánchez
  • M. A. Clavero
  • A. M. Fernández
  • R. Morante
  • A. Cardeña
  • M. Fernández
  • A. Rubio
Original Paper

Abstract

Understanding the spatial and temporal variation in soil respiration within small geographic areas is essential to accurately assess the carbon budget on a global scale. In this study, we investigated the factors controlling soil respiration in an altitudinal gradient in a southern Mediterranean mixed pine–oak forest ecosystem in the north face of the Sierra de Guadarrama in Spain. Soil respiration was measured in five Pinus sylvestris L. plots over a period of 1 year by means of a closed dynamic system (LI-COR 6400). Soil temperature and water content were measured at the same time as soil respiration. Other soil physico-chemical and microbiological properties were measured during the study. Measured soil respiration ranged from 6.8 to 1.4 μmol m−2 s−1, showing the highest values at plots situated at higher elevation. Q10 values ranged between 1.30 and 2.04, while R10 values ranged between 2.0 and 3.6. The results indicate that the seasonal variation of soil respiration was mainly controlled by soil temperature and moisture. Among sites, soil carbon and nitrogen stocks regulate soil respiration in addition to soil temperature and moisture. Our results suggest that application of standard models to estimate soil respiration for small geographic areas may not be adequate unless other factors are considered in addition to soil temperature.

Keywords

Soil respiration Microbial biomass carbon Carbon and nitrogen stocks Soil water content Soil temperature Pinus sylvestris Altitudinal transects 

Notes

Acknowledgments

This research was conducted in the framework of Spanish HU2005-0023, AGL2004-01941 and CGL 2006-02922/CLI projects and the European COST 639 (BurnOut) project. The authors would like to express their gratitude to Mr. Javier Dones, Mr. Manuel Lopez Arias and Mr. Jose M. Grau for their valuable assistance with field aspects and for the data provided.

References

  1. Chen W, Zhang Q, Chilar J, Bauhus J, Price DT (2004) Estimating fine-root biomass and production of boreal and cool temperate forests using above-ground measurements: a new approach. Plant Soil 256:31–46. doi:10.1007/s11104-005-8503-3 CrossRefGoogle Scholar
  2. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model. Nature 408(6809):184–187. doi:10.1038/35041539 CrossRefPubMedGoogle Scholar
  3. Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Chang Biol 4:217–227. doi:10.1046/j.1365-2486.1998.00128.x CrossRefGoogle Scholar
  4. Dilustro JJ, Collins B, Duncan L, Crawford C (2005) Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. For Ecol Manage 204:85–95. doi:10.1016/j.foreco.2004.09.001 CrossRefGoogle Scholar
  5. Garcia del Barrio JM, Lopez Arias JM, Morales D (1997) Producción y renovación de acículas en la cubierta árborea de un pinar de Pinus sylvestris en la Sierra de Guadarrama. Valsaín. Segovia. Actas IRATI 97. II Congreso Forestal Español. Tomo I, pp 325–330Google Scholar
  6. Garten CT, Hanson PJ (2006) Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 136:342–352. doi:10.1016/j.geoderma.2006.03.049 CrossRefGoogle Scholar
  7. Goh KM (2004) Carbon sequestration and stabilization in soils: implications for soil productivity and climate change. Soil Sci Plant Nutr 50(4):467–476Google Scholar
  8. González Cascón MR, Lopez Arias M, Serrano M, Minaya MT (1994) Balance de entradas/salidas de cationes en una pequeña cuenca forestal de Pinus sylvestris en la Sierra de Guadarrama. Ecologia 8:157–166Google Scholar
  9. Islam KR, Weil RR (1998) Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biol Fertil Soils 27:408–416. doi:10.1007/s003740050451 CrossRefGoogle Scholar
  10. Janssens IA, Dore S, Epron D et al. (2003) Climatic influences on seasonal and spatial differences in soil CO2 efflux. In: Canopy fluxes of energy, water and carbon dioxide of European forests. Springer, Berlin, pp 235–256Google Scholar
  11. Janssens IA, Pilegaard K (2003) Large seasonal changes in Q10 of soil respiration in a beech forest. Glob Chang Biol 9:911–918. doi:10.1046/j.1365-2486.2003.00636.x CrossRefGoogle Scholar
  12. Kang S, Doh S, Lee D, Lee D, Jin VL, Kimball JS (2003) Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Glob Chang Biol 9:1427–1437. doi:10.1046/j.1365-2486.2003.00668.x CrossRefGoogle Scholar
  13. Li H, Yan J, Yue X, Wang M (2007) Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agric For Meteorol. doi:10.1016/jl.agrformet.2007.10.009
  14. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil. Tellus B Chem Phys Meteorol 44B:81–99CrossRefGoogle Scholar
  15. Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis P, Valentini R (2002) Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Glob Chang Biol 8:851–866. doi:10.1046/j.1365-2486.2002.00521.x CrossRefGoogle Scholar
  16. Rodeghiero M, Cescatti A (2005) Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Glob Chang Biol 11:1024–1041. doi:10.1111/j.1365-2486.2005.00963.x CrossRefGoogle Scholar
  17. Tang J, Baldocchi D, Xu L (2005a) Tree photosynthesis modulates soil respiration on a diurnal time scale. Glob Chang Biol 11:1298–1304. doi:10.1111/j.1365-2486.2005.00978.x CrossRefGoogle Scholar
  18. Tang J, Misson L, Gershenson A, Cheng W, Goldstein A (2005b) Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agric For Meteorol 132:212–227. doi:10.1016/j.agrformet.2005.07.011 CrossRefGoogle Scholar
  19. Tedeschi V, Rey A, Manca G, Valentini R, Jarvis PG, Borghetti M (2006) Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Glob Chang Biol 12:110–121. doi:10.1111/j.1365-2486.2005.01081.x CrossRefGoogle Scholar
  20. Wang Y, Amundson R, Niu XF (2000) Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux. Global Biogeochem Cycles 14:199–211. doi:10.1029/1999GB900074 CrossRefGoogle Scholar
  21. Xu M, Qi Y (2001) Soil-surface CO2 efflux and its spatial temporal variation in a young ponderosa pine plantation in northern California. Glob Chang Biol 7:667–677. doi:10.1046/j.1354-1013.2001.00435.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • R. Inclán
    • 1
  • C. Uribe
    • 1
  • D. De La Torre
    • 2
  • D. M. Sánchez
    • 1
  • M. A. Clavero
    • 1
  • A. M. Fernández
    • 1
  • R. Morante
    • 1
  • A. Cardeña
    • 1
  • M. Fernández
    • 1
  • A. Rubio
    • 3
  1. 1.CIEMATMadridSpain
  2. 2.Universidad de Salamanca, Área de EcologíaSalamancaSpain
  3. 3.Dept SilvopasciculturaUniversidad PolitécnicaMadridSpain

Personalised recommendations