European Journal of Forest Research

, Volume 128, Issue 1, pp 75–84

The effects of a regeneration felling on photosynthetic photon flux density and regeneration growth in a Nothofagus pumilio forest

  • Juan Caldentey
  • Helmut Mayer
  • Manuel Ibarra
  • Alvaro Promis
Original Paper

Abstract

Photosynthetic photon flux density (PPFD) during the growing season and regeneration growth (height and base stem diameter) were investigated in two natural stands in the Patagonian region of Chile, one without silvicultural management and another with a regenerative felling under a shelterwood system. PPFD was measured by means of fifteen sensors (quantum Li-190SA) installed in each stand and distributed within three canopy openness grades. Four regeneration plots (1 m2) were established around each sensor. In each of the plots, the height and base diameter of ten labelled plants within the upper regeneration layer were measured in the growing seasons 2001–2002 and 2002–2003. In the stand with regeneration felling total PPFD in the growing season was 2.5–2.9 times higher than in the stand without intervention. In both stands, total PPFD in the growing season increased by about 420 mmol/m2 when the relative canopy, which was in the range between 30 and 70%, was reduced by 10%. An identical behaviour was observed for the height and base stem diameter increases reflecting a clear effect of intervention and canopy coverage on the magnitude of PPFD received by the regeneration and its development.

Keywords

Regeneration felling Photosynthetic photon flux density Regeneration Nothofagus pumilio Chilean Patagonia 

References

  1. Agestam E, Ekö P, Nilsson U, Welander N (2003) The effects of shelterwood density and site preparation on natural regeneration of Fagus sylvatica in southern Sweden. For Ecol Manage 176:61–73CrossRefGoogle Scholar
  2. Baldocchi D, Collineau S (1994) The physical nature of solar radiation in heterogeneous canopies: spatial and temporal attributes. In: Caldwell M, Peearcy R (eds) Exploitation of environmental heterogeneity by plants; ecophysiological processes above and below ground. Academic Press, New York, pp 21–71Google Scholar
  3. Bartsch N, Rapp C (1995) Regeneración de la Lenga en una tala rasa en hueco. En Regeneración Natural de la Lenga; Factores Ecológicos, vol 21. CEIFAP, Publicacion Tecnica, Argentina, pp 50–71Google Scholar
  4. Beckage B, Clark J, Clinton B, Haines B (2000) A long-term study of tree seedling recruitment in southern Appalachian forest: The effects of canopy gaps and shrub understories. Can J Res 30:1617–1631. doi:10.1139/cjfr-30-10-1617 CrossRefGoogle Scholar
  5. Brunner A, Nigh G (2000) Light absorption and bole volume growth of individual Douglas-Fir trees. Tree Physiol 20:323–332PubMedGoogle Scholar
  6. Caldentey J, Promis A, Schmidt H, Ibarra M (2000) Variación microclimática causada por una corta de protección en un bosque de lenga (Nothofagus pumilio). Rev Cienc Forestales 14:50–58Google Scholar
  7. Caldentey J, Ibarra M, Hernández J (2001a) Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. For Ecol Manage 148:145–157CrossRefGoogle Scholar
  8. Caldentey J, Ibarra M, Promis A, Donoso S (2001b) Utilización silvícola de un bosque natural de lenga (Nothofagus pumilio) en Chile: Efectos microclimáticos y en el desarrollo de regeneración. In: Actas III Congreso Forestal Español. Granada, España, pp 129–134Google Scholar
  9. Caldentey J, Ibarra M, Promis A (2005) Microclimatic variations in a Nothofagus pumilio forest caused by shelterwood systems: results of seven years of observation. In: Abstracts IUFRO XXII World Congress of International Review 7:46Google Scholar
  10. Canham C, Denslow J, Platt W, Runkle J, Spies T, White P (1990) Light regimes beneath closed canopies and tree gaps in temperate and tropical forests. Can J Res 20:620–631CrossRefGoogle Scholar
  11. Canham C, Finzi A, Pacala S, Burbank D (1994) Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can J Res 24:337–349. doi:10.1139/x94-046 CrossRefGoogle Scholar
  12. Collet C, Lanter O, Pardos M (2001) Effects of canopy opening on height and diameter growth in naturally regenerated beech seedlings. Ann For Sci 58:127–134. doi:10.1051/forest:2001112 CrossRefGoogle Scholar
  13. Collet C, Chenost C (2006) Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. Forestry 79(5):489–502. doi:10.1093/forestry/cpl033 CrossRefGoogle Scholar
  14. Chen J, Saunders S, Crow T, Naiman R (1999) Microclimate in forest ecosystem and landscape ecology. Bioscience 49:288–297. doi:10.2307/1313612 CrossRefGoogle Scholar
  15. Díaz C, Avilés C, Roberts R (1960) Los grandes grupos de suelos de la Provincia de Magallanes. Agric Tecnica XX:227–308Google Scholar
  16. Dodds P (1997) Efecto de ramoneo de guanacos (Lama guanicoe) sobre la regeneración de lenga (Nothofagus pumilio) en Russfin, Tierra del Fuego. Memoria de Titulo, Ingeniería Forestal. Facultad de Ciencias Forestales, Universidad de Chile. Santiago, Chile, 58 pGoogle Scholar
  17. Duchesneau R, Lesage I, Messier Ch, Morin H (2001) Effects of Light and intraspecific competition on growth and crown morphology of two size classes of understory balsam fir samplings. For Ecol Manage 140:215–225CrossRefGoogle Scholar
  18. Espejo G (1996) Desarrollo de la regeneración inicial de lenga bajo corta de protección en la XII Región. Memoria de Título, Ingeniería Forestal. Facultad de Ciencias Agrarias y Forestales, Universidad de Chile, Santiago, Chile, 57 pGoogle Scholar
  19. Fleck S, Niinemts U, Cescatti A, Tenhunen JD (2003) Three-dimensional lamina architecture alters light-harvesting efficiency in Fagus: a leaf-scale analysis. Tree Physiol 23:577–589PubMedGoogle Scholar
  20. Gajardo R (1994) La Vegetación Natural de Chile, Clasificación y Distribución Geográfica. Editorial Universitaria. Santiago, Chile, 165 ppGoogle Scholar
  21. Gendron F, Messier C, Comeau P (2001) Temporal variations in the understory photosynthetic photon flux density of a deciduous stand: the effects of canopy development, solar elevation, and sky conditions. Agric For Meteorol 106:23–40. doi:10.1016/S0168-1923(00)00174-X CrossRefGoogle Scholar
  22. Grimmond C, Robeson S, Schoof J (2000) Spatial variability of micro-climatic conditions within a mid-latitude deciduous forest. Clim Res 15:137–149. doi:10.3354/cr015137 CrossRefGoogle Scholar
  23. Grosse H (1988) Desarrollo de plantas de los géneros Fagus y Nothofagus en función de la luminosidad. Cienc Invest Forestal 2:114–120Google Scholar
  24. Guo Y, Shelton M, Lockhart B (2001) Effects of light regimes on the growth of Cherrybark Oak seedlings. For Sc 47:270–277Google Scholar
  25. Hale S (2001) Light regime beneath Sitka spruce plantations in northern Britain: preliminary results. For Ecol Manage 151:61–66CrossRefGoogle Scholar
  26. Hale S (2003) The effect of thinning intensity on the below-canopy light environment in a Sitka spruce plantation. For Ecol Manage 179:341–349CrossRefGoogle Scholar
  27. Heinemann K, Kitzberger T, Veblen T (2000) Influences of gap microheterogeneity on the regeneration of Nothofagus pumilio in a xeric old-growth forest of north-western Patagonia, Argentina. Can J Res 30:25–33. doi:10.1139/cjfr-30-1-25 CrossRefGoogle Scholar
  28. Hickey J, Wilkinson G (1999) Long- term regeneration trends from a silvicultural systems trial in lowland cool temperate rainforest in Tasmania. Tasforest 11:1–22Google Scholar
  29. Holst T, Mayer H (2005) Radiation components of beech stands in Southwest Germany. Meteorol Z 14:107–115. doi:10.1127/0941-2948/2005/0010 CrossRefGoogle Scholar
  30. Ibarra M, Caldentey J, Promis A, Hernández P (2001) Efectos de una corta de protección en el microclima y el desarrollo inicial de la regeneración en un bosque de lenga (Nothofagus pumilio), vol 58. In: Actas XIII Reunión Anual de la Sociedad Botánica de Chile. Gayana Botánica, p 80Google Scholar
  31. INIA Instituto Nacional de Investigaciones Agropecuarias (1989) Mapa agroclimático de Chile, Ministerio de Agricultura. Santiago, Chile, 221 ppGoogle Scholar
  32. Inoue A, Yamamoto K, Mizoue N, Kawahara Y (2004) Effects of image quality, size and camera type on forest light environment estimates using digital hemispherical photography. Agric Meteorol 126:89–97. doi:10.1016/j.agrformet.2004.06.002 CrossRefGoogle Scholar
  33. Lieffers V, Messier C, Stadt K, Gendron F, Comeau P (1999) Predicting and managing light in the understory of boreal forest. Can J Res 29:796–806. doi:10.1139/cjfr-29-6-796 CrossRefGoogle Scholar
  34. Loguercio G (1995) Crecimiento de la regeneración de lenga (Nothofagus pumilio) y su dependencia de las condiciones dominantes de radiación. In: Regeneración Natural de la Lenga; Factores Ecológicos, vol 21. CIEFAP, Publicación Técnica, Argentina, pp 1–49Google Scholar
  35. Madsen P, Larsen J (1997) Natural regeneration of beech (Fagus sylvatica.) with respect to canopy density, soil moisture and soil carbon content. For Ecol Manage 97:95–105CrossRefGoogle Scholar
  36. Martínez-Pastur G, Fernández C, Peri P (1994) Variación de parámetros estructurales y de composición del sotobosque para bosques de Nothofagus pumilio en relación a gradientes ambientales indirectos. Cienc Forestales 9:11–22Google Scholar
  37. Martínez-Pastur G, Peri P, Fernández M, Staffieri G (1999) Desarrollo de la regeneración a lo largo del ciclo de manejo de un bosque de Nothofagus pumilio: 1. Incidencia de la cobertura y el aprovechamiento o cosecha. Rev Bosque 20:39–46Google Scholar
  38. Mayer H (1981a) Globalstrahlung im ostbayerischen Bergmischwald unter verschiedenen Überschirmungen. Arch Met Geoph Biokl Ser B 29:283–292CrossRefGoogle Scholar
  39. Mayer H (1981b) The vertical distribution of the net radiation budget within a spruce forest in summer. Arch Met Geoph Biokl Ser B 29:381–392CrossRefGoogle Scholar
  40. Mayer H, Holst T, Schindler D (2002) Mikroklima in Buchenbeständen—Teil I: Photosynthetisch aktive Strahlung. Forstw Cbl 121:301–321. doi:10.1046/j.1439-0337.2002.02038.x CrossRefGoogle Scholar
  41. Morecroft M, Taylor M, Oliver H (1998) Air and soil microclimates of deciduous woodland compared to an open site. Agric For Meteorol 90:141–156. doi:10.1016/S0168-1923(97)00070-1 CrossRefGoogle Scholar
  42. Nicotra A, Chazdon R, Iriarte S (1999) Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80:1908–1926CrossRefGoogle Scholar
  43. Otero L, Donoso P, Barrales L (1994) Efectos ambientales de las corta de protección en bosque nativo. In: Actas Seminario internacional medio ambiente, biodiversidad y actividades productivas. Instituto Forestal, Santiago, Chile, pp 301–321Google Scholar
  44. Pacala S, Canham C, Silander J, Kobe R (1994) Sapling growth as a function of resources in a north temperate forest. Can J Res 24:2172–2183. doi:10.1139/x94-280 CrossRefGoogle Scholar
  45. Pichleer M, Hager M, Kazda M (2001) Contribution to the ecology and growth of young broadleaf species in advanced plantings of Quercus petrea, Fagus sylvatica and Acer pseudoplatanus. Centralblatt Forstwesen 4:175–192Google Scholar
  46. Pisano E (1977) Fitogeografía de Fuego Patagonia Chilena. I. Comunidades Vegetales entre latitudes 52°S y 56°S. An Inst Patagonia 8:121–150Google Scholar
  47. Promis A (1999) Modificaciones microclimáticas causadas por la intervención silvícola en bosques naturales de Lenga (Nothofagus pumilio). Memoria de Titulo, Ingeniería Forestal. Facultad de Ciencias Forestales, Universidad de Chile, Santiago, Chile, 108 pGoogle Scholar
  48. Rechene D (1995) Establecimiento y desarrollo de renovales de lenga en situaciones de baja cobertura. CIEFAP, Publicacion Tecnica, Argentina 21:76–114Google Scholar
  49. Rich PM, Wood J, Vieglais DA, Burek K, Webb N (1999) Guide to HemiView: software for analysis of hemispherical photography. Delta-T Devices Ltd., Cambridge. Available from http://www.delta-t.co.uk/support-article.html?article=faq2005100703399
  50. Richter L, Frangi J (1992) Bases ecológicas para el manejo del bosque de Nothofagus pumilio de Tierra del Fuego. Revista de la Facultad de Agronomía, Universidad de La Plata; Argentina 68:35–52Google Scholar
  51. Runkle J, Stewart G, Veblen T (1995) Sapling diameter growth in gap for two Nothofagus species in New Zealand. Ecology 76:2107–2117. doi:10.2307/1941685 CrossRefGoogle Scholar
  52. Rusch V (1992) Principales limitantes para la regeneración de lenga en la zona N-E. de su área de distribución. Variables ambientales en claros del bosque, vol 8. CEIFAP, Publicacion Tecnica, Argentina, pp 61–73Google Scholar
  53. Schmidt H (1994) Silvicultura y sustentabilidad en un bosque de lenga de producción en Magallanes. In: Actas Seminario internacional medio ambiente, biodiversidad y actividades productivas. Instituto Forestal, Santiago, Chile, pp 107–117Google Scholar
  54. Schmidt H, Urzúa A (1982) Transformación y manejo de los bosques de Lenga en Magallanes. Universidad de Chile. Facultad de Ciencias Agrarias, Veterinarias y Forestales. Santiago, Chile. Ciencias Agrícolas 11, 62 pGoogle Scholar
  55. Schmidt H, Caldentey J (1999) Seguimiento forestal y ambiental de los bosques de lenga XII Región. Corporación Nacional Forestal, Intendencia XII Región de Magallanes y Antártica Chilena, Universidad de Chile, Santiago, Chile, 74 pGoogle Scholar
  56. Schmidt H, Caldentey J, Peña K (1997) Seguimiento forestal y ambiental del uso de los bosques de Lenga, XII Región. Corporación Nacional Forestal, Intendencia XII Región de Magallanes y Antártica Chilena, Universidad de Chile. Santiago, Chile, 36 pGoogle Scholar
  57. Shibata M, Nakashizuka T (1995) Seed and seedling demography of four co-occurring Carpinus species in a temperate deciduous forest. Ecology 76:1099–1107. doi:10.2307/1940918 CrossRefGoogle Scholar
  58. Sonohat G, Balandier P, Ruchaud F (2004) Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests. Ann Sci 61:629–641. doi:10.1051/forest:2004061 CrossRefGoogle Scholar
  59. Szwagrzyk J, Szewczyk J, Bodziarczyk J (2001) Dynamics of seedling banks in beech forest: result of a 10-year study on germination, growth and survival. For Ecol Manage 141:237–250CrossRefGoogle Scholar
  60. Taucher E (1999) Bioestadística. Editorial Universitaria, Santiago, Chile, 310 pGoogle Scholar
  61. Uemura A, Ishida A, Nakano T, Tesrasmihina I, Tanabe H, Matsumoto Y (2000) Acclimation of leaf characteristics of Fagus species it previous-year and current-year solar irradiances. Tree Physiol 20:945–951PubMedGoogle Scholar
  62. Uriarte A (1987) Crecimiento y calidad de la regeneración de Lenga (N. pumilio) en bosques secundarios en la Provincia de Ultima Esperanza, XII Región. Memoria de Titulo, Ingeniería Forestal. Facultad de Ciencias Forestales, Universidad de Chile. Santiago, Chile, 94 pGoogle Scholar
  63. Veblen T (1989) Nothofagus regenerations in treefall gaps in northern Patagonia. Can J Res 19:365–371. doi:10.1139/x89-055 CrossRefGoogle Scholar
  64. Veblen T (1992) Regeneration dynamics. In: Glenn-Lewin D, Peet R, Veblen T (eds) Plant succession: theory and prediction. Chapman & Hall, London, pp 152–187Google Scholar
  65. Vergara C (1996) Evaluación de la regeneración en cortas de protección comerciales de bosque de lenga, en la XII Región. Memoria de Titulo Ingeniería Forestal. Facultad de Ciencias Forestales, Universidad de Chile, Santiago, Chile, 56 pGoogle Scholar
  66. Yamamoto S (2000) Forest gap dynamics and tree regeneration. J For Res 5:223–229. doi:10.1007/BF02767114 CrossRefGoogle Scholar
  67. Yamamoto S, Nishimura N, Matsui K (1995) Natural disturbance and tree species coexistence in an old-growth beech - dwarf bamboo forest, Southwestern Japan. J Veg Sci 6:875–886. doi:10.2307/3236402 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Juan Caldentey
    • 1
  • Helmut Mayer
    • 2
  • Manuel Ibarra
    • 1
  • Alvaro Promis
    • 3
  1. 1.Departamento de SilviculturaUniversidad de ChileSantiagoChile
  2. 2.Meteorological InstituteAlbert-Ludwigs-Universitäty of FreiburgFreiburgGermany
  3. 3.Institute of SilvicultureAlbert-Ludwigs-Universitäty of FreiburgFreiburgGermany

Personalised recommendations