Advertisement

European Journal of Forest Research

, Volume 128, Issue 2, pp 87–98 | Cite as

Effects of the extreme drought in 2003 on soil respiration in a mixed forest

  • Petia S. Nikolova
  • Stephan Raspe
  • Christian P. Andersen
  • Raphael Mainiero
  • Helmut Blaschke
  • Rainer Matyssek
  • Karl-Heinz HäberleEmail author
Original Paper

Abstract

We present a field study on the drought effects on total soil respiration (SRt) and its components, i.e., “autotrophic” (SRa: by roots/mycorrhizosphere) and “heterotrophic” respiration (SRh: by microorganisms and soil fauna in bulk soil), in a mature European beech/Norway spruce forest. SRa and SRh were distinguished underneath groups of beech and spruce trees using the root exclusion method. Seasonal courses of SRa and SRh were studied from 2002 to 2004, with the summer of 2003 being extraordinarily warm and dry in Central Europe. We (1) analyzed the soil temperature (T s) and moisture sensitivity of SRa and SRh underneath both tree species, and (2) examined whether drought caused differential decline of SRa between spruce and beech. Throughout the study period, SRa of beech accounted for 45–55% of SRt, independent of the soil water regime; in contrast, SRa was significantly reduced during drought in spruce, and amounted then to only 25% of SRt. In parallel, fine-root production was decreased during 2003 by a factor of six in spruce (from 750 to 130 mg l−1 a−1), but remained at levels similar to those in 2002 in beech (about 470 mg l−1 a−1). This species-specific root response to drought was related to a stronger decline of SRa in spruce (by about 70%) compared to beech (by about 50%). The sensitivity of SRa and SRh to changing T s and available soil water was stronger in SRa than SRh in spruce, but not so in beech. It is concluded that SRa determines the effect of prolonged drought on the C efflux from soil to a larger extent in spruce than beech, having potential implications for respective forest types.

Keywords

Fagus sylvatica Picea abies Soil respiration components Water availibility Temperature Root exclusion Carbon partitioning 

Notes

Acknowledgments

The authors gratefully acknowledge funding through SFB 607 “Growth and Parasite Defence – Competition for Resources in Economic Plants from Agronomy and Forestry” provided by the Deutsche Forschungsgemeinschaft (DFG). We also thank Ivan Nikolov for his skilful support of the fine-root analyses and soil respiration measurements, Thomas Feuerbach for his precise technical assistance, Dr. Holger Holland-Moritz (LWF: Bayerische Landesanstalt für Wald und Forstwirtschaft, Freising) for helpful comments on statistical evaluations, Prof. Dr. Anton Hartmann (Helmholtz Center Munich) for hints on literature, and Philip Wipfler (Chair of Forest Yield Science, Technische Universität München) for supplying the stem diameter increment data. We also thank Dr. Carolyn Scagel, USDA-ARS, for helpful suggestions on an earlier version of this manuscript. The information in this document has been subjected to EPA peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

References

  1. Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar C, Elling W, Ewald J, Felbermeier B, von Gilsa H, Huss J, Kenk G, Kölling C, Kohnle U, Meyer P, Mosandl R, Moosmayer H-U, Palmer S, Reif A, Rehfuess K-E, Stimm B (2005) Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa. Allg Forst Jagd-Zeitung 176:60–66Google Scholar
  2. Andersen CP, Nikolov I, Nikolova P, Matyssek R, Häberle K-H (2005) Estimating “autotrophic” belowground respiration in spruce and beech forests: decreases following girdling. Eur J Forest Res 124:155–163CrossRefGoogle Scholar
  3. Armbruster M, Seegert J, Feger K-H (2004) Effects of changes in tree species composition on water flow dynamics—model applications and their limitations. Plant Soil 264:13–24CrossRefGoogle Scholar
  4. Baggs EM (2006) Partitioning the components of soil respiration: a research challenge. Plant Soil 284:1–5CrossRefGoogle Scholar
  5. Bååth E, Wallander H (2003) Soil and rhizosphere microorganisms have the same Q10 for respiration in a model system. Glob Chang Biol 9:1788–1791CrossRefGoogle Scholar
  6. Bärlocher F (1999) Biostatistik. Thieme, Stuttgart, 206 ppGoogle Scholar
  7. Beier C (1998) Water and element fluxes calculated in a sandy forest soil taking spatial variability into account. Forest Ecol Manage 101:269–280CrossRefGoogle Scholar
  8. Beierkuhnlein C, Foken T (eds) (2008) Klimawandel in Bayern. Auswirkungen und Anpassungsmöglichkeiten. Bayreuther Forum Ökologie Band 113. BayCEER, Universität BayreuthGoogle Scholar
  9. Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the sensitivity of soil respiration. Nature 396:570–572CrossRefGoogle Scholar
  10. Borken W, Beese F (2005) Soil respiration in pure and mixed stands of European beech and Noway spruce following removal of organic horizons. Can J For Res 35:2756–2764CrossRefGoogle Scholar
  11. Borken W, Xu Y-J, Brumme R, Lamersdorf N (1999) A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: drought and rewetting effects. Soil Sci Soc Am J 63:1848–1855Google Scholar
  12. Borken W, Davidson EA, Savage K, Gaudinski J, Trumbore SE (2003) Drying and wetting effects on carbon dioxide release from organic horizons. Soil Sci Soc Am J 67:1888–1896Google Scholar
  13. Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of above. Ground litter, below-ground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can J Forest Res 23:1402–1407CrossRefGoogle Scholar
  14. Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635CrossRefGoogle Scholar
  15. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161CrossRefGoogle Scholar
  16. Ciais P, Reichstein M, Viovy N, Granier A, Oge J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Gruenwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze E-D, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533PubMedCrossRefGoogle Scholar
  17. Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Chang Biol 4:217–227CrossRefGoogle Scholar
  18. Davidson EA, Janssens IA, Luo YQ (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Chang Biol 12:154–164CrossRefGoogle Scholar
  19. Easterling D, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2073PubMedCrossRefGoogle Scholar
  20. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer dynamischer und historischer Sicht. Ulmer, StuttgartGoogle Scholar
  21. Epron D, Farque L, Lucot É, Badot P-M (1999) Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water content. Ann Forest Sci 56:221–226CrossRefGoogle Scholar
  22. Epron D, LeDantec V, Dufrene E, Granier A (2001) Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiol 21:145–152PubMedGoogle Scholar
  23. Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls of microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob Chang Biol 9:1322–1332CrossRefGoogle Scholar
  24. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11CrossRefGoogle Scholar
  25. Häberle K-H, Nunn A, Reiter I, Werner H, Heller W, Bahnweg G, Gayler S, Lütz C, Matyssek R (2008) Variation of defence-related metabolites in the foliage of adult beech and spruce—a conceptual approach to approximating traded-off carbon. Eur J Forest Res. doi: 10.1007/s10342-008-0220-z
  26. Hahn V, Högberg P, Buchmann N (2006) 14C—a tool for separation of autotrophic and heterotrophic soil respiration. Glob Chang Biol 12:972–982CrossRefGoogle Scholar
  27. Hammel K, Kennel M (2001) Charakterisierung und Analyse der Wasserverfügbarkeit und des Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell BROOK90. Forstliche Forschungsberichte No. 185, MünchenGoogle Scholar
  28. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146CrossRefGoogle Scholar
  29. Hayes AJ (1979) The microbiology of plant litter decomposition. Sci Prog (Oxford) 66:25–42Google Scholar
  30. Hertel D, Leuschner C (2002) A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus-Quercus mixed forest. Plant Soil 239:237–251CrossRefGoogle Scholar
  31. Hodge A (2004) The plastic root: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24CrossRefGoogle Scholar
  32. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792PubMedCrossRefGoogle Scholar
  33. Högberg P, Nordgren A, Ågren GI (2002) Carbon allocation between tree root growth and root respiration in boreal pine forest. Oecologia 132:579–581CrossRefGoogle Scholar
  34. Janssens IA, Lankreijer H, Matteucci A, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Guðmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze E-D, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Chang Biol 7:269–278CrossRefGoogle Scholar
  35. Janssens IA, Dore S, Epron D, Lankreijer H, Buchmann N, Longdoz B, Brossaud J, Montagnani L (2003) Climatic influences on seasonal and spatial differences in soil CO2 efflux. In: Valentini R (ed) Fluxes of carbon, water and energy of european forests. Ecological studies 163. Springer, BerlinGoogle Scholar
  36. Janssens IA, Pilegaard K (2003) Large seasonal changes in Q 10 of soil respiration in a beech forest. Glob Chang Biol 9:911–918CrossRefGoogle Scholar
  37. Kölling C, Zimmermann L (2007) Die Anfälligkeit der Wälder Deutschlands gegenüber dem Klimawandel. Gefahrstoffe-Reinhaltung der Luft (6): 259–267.Google Scholar
  38. Kutschera L, Lichtenegger E (2002) Wurzelatlas mitteleuropäischer Waldbäume und Sträucher. Leopold Stocker Verlag, GrazGoogle Scholar
  39. Kuzyakov Y, Larionova AA (2005) Root and rhizomicrobial respiration: a review of approaches to estimate respiration of autotrophic and heterotrophic organisms in soil. J Plant Nutr Soil Sci 168:503–520CrossRefGoogle Scholar
  40. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448CrossRefGoogle Scholar
  41. Larcher W (2001) Ökophysiologie der Pflanzen. UTB, StuttgartGoogle Scholar
  42. Lavigne MB, Foster RJ, Goodine G (2004) Seasonal and annual changes in soil respiration in relation to soil temperature, water potential and trenching. Tree Physiol 24:415–424PubMedGoogle Scholar
  43. Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. Forest Ecol Manage 149:33–46CrossRefGoogle Scholar
  44. Löw M, Herbinger K, Nunn AJ, Häberle KH, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548CrossRefGoogle Scholar
  45. Mainiero R, Kazda M (2006) Depth-related fine root dynamics of Fagus sylvatica during exceptional drought. Forest Ecol Manage 237:135–142CrossRefGoogle Scholar
  46. Nikolova PS (2007) Below-ground competitiveness of adult beech and spruce trees: resource investments versus returns. PhD Thesis, Ecophysiology of Plants, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, p 161Google Scholar
  47. Nikolova P, Blaschke H, Matyssek R, Pretzsch H, Seifert T (2008) Combined application of computer tomography and light microscopy for analysis of conductive xylem area in coarse roots of European beech and Norway spruce. Eur J Forest Res. doi: 10.1007/s10342-008-0211-0
  48. Otto H-J (1994) Waldoekologie. Ulmer, StuttgartGoogle Scholar
  49. Parr JF, Gardner WR, Elliot LF (eds) (1981) Water potential relations in soil microbiology (SSSA special publication number 9). Soil Science Society of America, MadisonGoogle Scholar
  50. Pedersen JB, Bille-Hansen J (1999) A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. Forest Ecol Manage 114:55–70CrossRefGoogle Scholar
  51. Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?” im Kranzberger Forst. Forstwissenscaftliches Centralbl 117:201–207Google Scholar
  52. Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands—a review. Forest Ecol Manage 175:253–273CrossRefGoogle Scholar
  53. Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Glob Biochem Cycles 9:23–36CrossRefGoogle Scholar
  54. Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90CrossRefGoogle Scholar
  55. Raspe S, Grimmeisen W, Schultze B (2004) Der Sommer 2003 grub dem Wald das Wasser ab. Bayer. Landesanstalt für Wald und Forstwirtschaft, Freising, LWF aktuellNo. 43:4–6Google Scholar
  56. Reichstein M, Tenhunen JD, Roupsard O, Ourcival J-M, Rambal S, Dore S, Valentini R (2002) Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Funct Ecol 16:27–39CrossRefGoogle Scholar
  57. Reiter IM (2004) Space-related resource investments and gains of adult beech (Fagus sylvatica) and spruce (Picea abies) as a quantification of aboveground competitiveness. PhD Thesis, Ecophysiology of Plants, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising. Google Scholar
  58. Rennenberg H, Seiler W, Matyssek R, Geßler A, Kreuzwieser J (2004) Die Buche (Fagus sylvatica L.)–ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? Allg Forst Jagdzeitung 175:210–224Google Scholar
  59. Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R (2002) Annual variation in soil respiration and its components in a coppie oak forest in Central Italy. Glob Chang Biol 8:851–866CrossRefGoogle Scholar
  60. Rötzer T, Seifert T, Pretzsch H (2008) Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. Eur J Forest Res. doi: 10.1007/s10342-008-0213-y
  61. Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20CrossRefGoogle Scholar
  62. Schmid I (2002) The influence of soil type and interspecific competition on the root system of Norway spruce and European beech. Basic Appl Ecol 3:339–346CrossRefGoogle Scholar
  63. Schmid I, Kazda M (2002) Root distribution of Norway spruce in monospecific and mixed stands on different soils. Forest Ecol Manage 159:37–47CrossRefGoogle Scholar
  64. Schuhbäck T (2004) Nährelementenstatus und Bodenzustand an der Bestandesgrenze Buche-Fichte im Mischbestand Kranzberger Forst. Diploma Thesis, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, 65 ppGoogle Scholar
  65. Schuur EAG, Trumbore SE (2006) Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Glob Chang Biol 12:165–176CrossRefGoogle Scholar
  66. Schütt P, Schuck HJ, Aas G (2002) Enzyklopädie der Holzgewächse. Handbuch und Atlas der Dendrologie. Ecomed Verlag, LandsbergGoogle Scholar
  67. Subke J-A, Inglima I, Cortufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical review. Glob Chang Biol 12:921–943CrossRefGoogle Scholar
  68. Thierron V, Laudelout H (1996) Contribution of root respiration to total CO2 efflux from the soil of a deciduous forest. Can J Forest Res 26:1142–1148CrossRefGoogle Scholar
  69. Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of Sap. Springer, Berlin, 304 ppGoogle Scholar
  70. Utschig H, Bachmann M, Pretzsch H (2004) Das Trockenjahr 1976 bescherte langjährige Zuwachseinbrüche. Bayer. Landesanstalt für Wald und Forstwirtschaft, Freising, LWF aktuell 43:17–18Google Scholar
  71. Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89CrossRefGoogle Scholar
  72. Wiant HV (1967) Contribution of roots to forest soil respiration. Adv Front Plant Sci 18:163–167Google Scholar
  73. Wilson JM, Griffin DM (1975) Water potential and the respiration of microorganisms in the soil. Soil Biol Biochem 7:199–204CrossRefGoogle Scholar
  74. Xu M, Qi Y (2001) Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada mountains. Plant Soil 237:15–23CrossRefGoogle Scholar
  75. Zirlewagen D, von Wilpert K (2001) Modeling water and ion fluxes in a highly structured, mixed-species stand. Forest Ecol Manage 143:27–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Petia S. Nikolova
    • 1
  • Stephan Raspe
    • 2
  • Christian P. Andersen
    • 3
  • Raphael Mainiero
    • 4
  • Helmut Blaschke
    • 1
  • Rainer Matyssek
    • 1
  • Karl-Heinz Häberle
    • 1
    Email author
  1. 1.Ecophysiology of Plants, Weihenstephan Center of Life and Food SciencesTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.Bayerische Landesanstalt für Wald und ForstwirtschaftFreisingGermany
  3. 3.Western Ecology Division, National Health and Environmental Effects Research LaboratoryUnited States Environmental Protection AgencyCorvallisUSA
  4. 4.Institute for Systematic Botany and Ecology, Biology VUniversity of UlmUlmGermany

Personalised recommendations