European Journal of Forest Research

, Volume 127, Issue 1, pp 43–61 | Cite as

Changes of soil chemistry, stand nutrition, and stand growth at two Scots pine (Pinus sylvestris L.) sites in Central Europe during 40 years after fertilization, liming, and lupine introduction

  • Jörg Prietzel
  • Karl Eugen Rehfuess
  • Ulrich Stetter
  • Hans Pretzsch
Original Paper

Abstract

Long-term (40 years) effects of two soil amelioration techniques [NPKMgCa fertilization + liming; combination of PKMgCa fertilization, liming, tillage, and introduction of lupine (Lupinus polyphyllus L.)] on chemical topsoil properties, stand nutrition, and stand growth at two sites in Germany (Pfaffenwinkel, Pustert) with mature Scots pine (Pinus sylvestris L.) forest were investigated. Both sites are characterized by base-poor parent material, historic N and P depletion by intense litter-raking, and recent high atmospheric N input. Such sites contribute significantly to the forested area in Central Europe. Amelioration resulted in a long-term increase of pH, base saturation, and exchangeable Ca and Mg stocks in the topsoil. Moreover, significant losses of the forest floor in organic carbon (OC) and nitrogen stocks, and a decrease of the C/N ratio in the topsoil were noticed. The concentrations and stocks of OC and N in the mineral topsoil increased; however, the increases compensated only the N, but not the OC losses of the forest floor. During the recent 40 years, the N nutrition of the stands at the control plots improved considerably, whereas the foliar P, K, and Ca concentrations decreased. The 100-fascicle weights and foliar concentrations of N, P, Mg, and Ca were increased after both amelioration procedures throughout the entire 40-year period of investigation. For both stands, considerable growth acceleration during the recent 40 years was noticed on the control plots; the amelioration resulted in an additional significant long-term growth enhancement, with the NPKMgCa fertilization liming + being more effective than the combination of PKMgCa fertilization, liming, tillage, and introduction of lupine. The comprehensive evaluation of soil, foliage, and growth data revealed a key relevance of the N and P nutrition of the stands for their growth, and a change from initial N limitation to a limitation of other growth factors (P, Mg, Ca, and water).

Keywords

Amelioration Liming Base cations Carbon budget Long-term study Nutrition trend Pinus sylvestris Soil organic matter Carbon budget 

Notes

Acknowledgments

We gratefully acknowledge the valuable assistance of I. Dully during soil sampling and soil analysis, of L. Steinacker during conduction of the forest inventories, and S. Skrebsky and H. Herzig during sampling of pine foliage. We also want to thank D. Glaser, G. Harrington, R. Heibl, P. Müller, and C. Pfab for their reliable help with soil chemical analyses. We appreciate the support of our work by the local forest service officers at the study sites, G. Schneider, T. Verron, F. Graf, and D. Michalski. The study was funded by the Bavarian State Ministry of Agriculture and Forestry (research grant ST 154).

References

  1. Aber JD, Nadelhoffer KI, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386CrossRefGoogle Scholar
  2. Akselsson C, Westling O, Sverdrup H, Gundersen P (2007) Nutrient and carbon budgets in forest soils as decision support in sustainable forest management. For Ecol Manage 238:167–174CrossRefGoogle Scholar
  3. Alewell C (2001) Predicting reversibility of acidification: the European sulfur story. Water Air Soil Pollut 130:1271–1276CrossRefGoogle Scholar
  4. Arbeitskreis Standortskartierung [in der Arbeitsgemeinschaft Forsteinrichtung] (2003) Forstliche Standortsaufnahme: Begriffe, Definitionen, Einteilungen, Kennzeichnungen, Erläuterungen. IHW-Verlag Eching, 6. Aufl., p 352Google Scholar
  5. Baum U (1981) Wirkungen von Meliorationsmaßnahmen auf die Nährelementvorräte im Boden eines streugenutzten Oberpfälzer Kiefernbestandes. Forstw Cbl 100:86–95CrossRefGoogle Scholar
  6. Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest ecosystems. Environ Rev 5:1–25CrossRefGoogle Scholar
  7. Billett MF, Parker A, Jarvis EA, Fitzpatrick EA, Cresser MSA (1990) Forest soil chemical changes between 1949/50 and 1987. J Soil Sci 41:133–145CrossRefGoogle Scholar
  8. Binkley D (1986) Forest nutrition management. Wiley, New YorkGoogle Scholar
  9. Binkley D, Högberg P (1997) Does atmospheric deposition of nitrogen threaten Swedish forests? For Ecol Manage 92:119–152CrossRefGoogle Scholar
  10. Blevins LL, Prescott CE, van Niejenhuis AV (2006) The roles of nitrogen and phosphorus in increasing productivity of western hemlock and western redcedar plantations on northern Vancouver Island. For Ecol Manage 234:116–122CrossRefGoogle Scholar
  11. Brockley RP (2000) Using foliar variables to predict the response of lodgepole pine to nitrogen and sulphur fertilization. Can J For Res 30:1389–1399CrossRefGoogle Scholar
  12. Derome J, Kukkola M, Mälkönen E (1986) Forest liming on mineral soils. Results of Finnish experiments. Nat Swed Environ Prot Board Rep 3084Google Scholar
  13. Ebermayer E (1876) Die gesamte Lehre von der Waldstreu. Springer, BerlinGoogle Scholar
  14. Elfving B, Tegnhammar L (1996) Trends of tree growth in Swedish forests 1953–1992: an analysis based on sample trees from the National Forest Inventory. Scand J For Res 11:38–49Google Scholar
  15. Glatzel G (1991) The impact of historic land use and modern forestry on nutrient relations of Central European forest ecosystems. Fertilizer Res 27:1–8CrossRefGoogle Scholar
  16. Hagedorn F, Spinnler D, Siegwolf R (2003) Increased N deposition retards mineralization of old soil organic matter. Soil Biol Biochem 35:1683–1692CrossRefGoogle Scholar
  17. Hallbäcken L, Popovic B (1985) Effects of forest liming on soil chemistry. Investigation of Swedish liming experiments. Nat Swed Environ Prot Board Rep 1880Google Scholar
  18. Heinsdorf D (1966) Untersuchungen über die Wirkung mineralischer Düngung auf das Wachstum und den Ernährungszustand von Kiefernkulturen auf Sandböden im norddeutschen Tiefland. Arch Forstwes 15/16:1271–1280Google Scholar
  19. Heinsdorf D, Beck W (2003) Langjährige Untersuchungen zur Wirkung hoher N-Zufuhr auf Ernährung und Wachstum eines Kiefernbestands. Beitr Forstw Landsch ökol 37:28–35Google Scholar
  20. Hetsch W, Ulrich B (1979) Die langfristige Auswirkung von Kalkung, Bodenbearbeitung und Lupinenunterbau auf die Bioelementvorräte zweier Flottsandstandorte im Forstamt Syke. Forst Holzw 36:548–554Google Scholar
  21. Hildebrand EE (1986) Zustand und Entwicklung der Austauschereigenschaften von Mineralböden aus Standorten mit erkrankten Waldbeständen. Forstw Cbl 105:60–76CrossRefGoogle Scholar
  22. Hildebrand EE (1994) Der Waldboden—ein konstanter Produktionsfaktor? Allg Forst Zeitschr 49:99–104Google Scholar
  23. Hofmann G, Heinsdorf D, Krauss HH (1990) Wirkung atmogener Stickstoffeinträge auf Produktivität und Stabilität von Kiefern-Forstökosystemen. Beitr Forstwirtsch 24:59–73Google Scholar
  24. Huber C, Baier R, Göttlein A, Weis W (2006) Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Höglwald, Germany. For Ecol Manage 233:11–20CrossRefGoogle Scholar
  25. Iivonen S, Kaakinen S, Jolkkonen A, Vapaavuori E, Linder S (2006) Influence of long-term nutrient optimization on biomass, carbon, and nitrogen acquisition and allocation in Norway spruce. Can J For Res 36:1563–1571CrossRefGoogle Scholar
  26. Jacobsen C, Rademacher P, Meesenburg H, Meiwes KJ (2003) Gehalte chemischer Elemente in Baumkompartimenten. Literaturstudie und Datensammlung. Ber Forschungszentr Waldökosyst B 69, p 81Google Scholar
  27. Jacobson S, Högbom L, Ring E, Nohrstedt HÖ (2004) Effects of wood ash dose and formulation on soil chemistry at two coniferous forest sites. Water Air Soil Pollut 158:113–125CrossRefGoogle Scholar
  28. Jandl R, Starlinger F, Englisch M, Herzberger E, Johann E (2002) Long-term effects of a forest amelioration experiment. Can J For Res 32:120–128CrossRefGoogle Scholar
  29. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268CrossRefGoogle Scholar
  30. Kenk G, Fischer H (1988) Evidence from nitrogen fertilization in forests of Germany. Environ Pollut 54:199–218PubMedCrossRefGoogle Scholar
  31. Krauß HH, Heinsdorf D (2005) Ernährungsstufen für wichtige Wirtschaftsbaumarten. Beitr Forstwirtsch Landsch ökol 39:72–179Google Scholar
  32. Kreutzer K (1972) Über den Einfluß der Streunutzung auf den Stickstoffhaushalt von Kiefernbeständen. Forstw Cbl 91:263–270CrossRefGoogle Scholar
  33. Kreutzer K (1976) Effect on growth in the next rotation (regeneration). In: ECE symposium harvesting of a larger part of the forest biomass, Hyniuäa, Finland, pp 78–90Google Scholar
  34. Kreutzer K (1995) Effect of forest liming on soil processes. Plant Soil 168/169:447–470CrossRefGoogle Scholar
  35. Lundström US, Bain DC, Taylor AFS, van Hees PAW (2003) Effects of acidification and its mitigation with lime and wood ash on forest soil processes: a review. Water Air Soil Pollut Focus 3:5–28Google Scholar
  36. Maljanen M, Jokinen H, Saari A, Strömmer R, Martikainen PJ (2006) Methane and nitrous oxide fluxes, and carbon dioxide production in boreal forest fertilized with wood ash and nitrogen. Soil Use Manage 22:151–157CrossRefGoogle Scholar
  37. Makeschin F, Francke S, Rehfuess KE, Rodenkirchen H (1985) Melioration saurer, devastierter Phyllitstandorte unter Kiefer im Bayerischen Forstamt Waldsassen. Forst Holzw 40:499–506Google Scholar
  38. Mälkönen E (1990) Estimation of nitrogen saturation on the basis of long-term fertilization experiments. Plant Soil 128:75–82CrossRefGoogle Scholar
  39. Mälkönen E, Kukkola M (1991) Effect of long-term fertilization on the biomass production and nutrient status of Scots pine stands. Fertilizer Res 27:113–127CrossRefGoogle Scholar
  40. Marschner B, Wilczynski A (1991) The effect of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany. Plant Soil 137:229–236CrossRefGoogle Scholar
  41. Matzner E (1985) Auswirkungen von Düngung und Kalkung auf den Elementumsatz und die Elementverteilung in zwei Waldökosystemen im Solling. Allg Forst Zeitschr 41:1143–1147Google Scholar
  42. McNulty S, Boggs J, Aber JD, Rustad L, Magill A (2005) Red spruce ecosystem level changes following 14 years of chronic N addition. For Ecol Manage 219:279–291CrossRefGoogle Scholar
  43. Meiwes KJ, Meesenburg H, Bartels H, Rademacher P, Khanna PK (2002) Accumulation of humus in the litter layer of forest stands at Solling: possible causes and significance for the nutrient cycling. Forst Holz 57:428–433Google Scholar
  44. Melin J, Nömmik H (1988) Fertilization nitrogen distribution in a Pinus sylvestris/Picea abies ecosystem, Central Sweden. Scand J For Res 3:3–15Google Scholar
  45. Mellert KH, Prietzel J, Straußberger R, Rehfuess KE (2004a) Long-term nutritional trends of conifer stands in Europe—results from the Recognition project. Eur J For Res 123:305–319Google Scholar
  46. Mellert KH, Prietzel J, Straußberger R, Rehfuess KE (2004b) Statistical assessment of relationships between recent changes of tree growth in two Bavarian Scots pine stands and changes of stand nutrition and climate. Aus J For Res 121:141–166Google Scholar
  47. Miller HG (1988) Long-term effects of application of nitrogen on forest sites. In: Cole DW, Gessel SP (eds) Forest site evaluation and long-term productivity. University of Washington Press, Seattle, pp 97–106Google Scholar
  48. Nemeč A (1942) Meliorationsversuche bei kümmernden Kulturen durch Düngung und Mitanbau der Dauerlupine. Forstarch 18:95Google Scholar
  49. Nilsen P, Abrahamsen G (2003) Scots pine and Norway spruce stands responses to annual N, P and Mg fertilization. For Ecol Manage 174:221–232CrossRefGoogle Scholar
  50. Nilsson SI, Andersson S, Valeur I, Persson T, Bergholm J, Wirén A (2001) Influence of dolomite lime on leaching and storage of C, N and S in a Spodosol under Norway spruce (Picea abies (L.) Karst.). For Ecol Manage 146:55–73CrossRefGoogle Scholar
  51. Nohrstedt HÖ (1990) Effect of repeated nitrogen fertilization with different doses on soil properties in a Pinus sylvestris stand. Scand J For Res 5:3–15Google Scholar
  52. Nohrstedt HÖ (1992) Soil chemistry in a Pinus sylvestris stand after repeated treatment with two types of ammonium nitrate fertilizer. Scand J For Res 7:457–462Google Scholar
  53. Nohrstedt HÖ, Arnebrant K, Bååth E, Söderström B (1989) Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen-fertilized forest soils in Sweden. Can J For Res 19:323–328CrossRefGoogle Scholar
  54. Nohrstedt HÖ, Jacobson S, Sikström U (2000) Effects of repeated urea doses on soil chemistry and nutrient pools in a Norway spruce stand. For Ecol Manage 130:47–56CrossRefGoogle Scholar
  55. Persson OA, Eriksson H, Johansson U (1995a) An attempt to predict long-term effects of atmospheric nitrogen deposition on the yield of Norway spruce stands. Plant Soil 168–169:249–254CrossRefGoogle Scholar
  56. Persson T, Rudebeck A, Wirén A (1995b) Pools and fluxes of carbon and nitrogen in 40-year-old forest liming experiments in southern Sweden. Water Air Soil Pollut 85:902–906Google Scholar
  57. Petterson F, Högbom L (2004) Long-term growth effects following forest nitrogen fertilization in Pinus sylvestris and Picea abies stands in Sweden. Scand J For Res 19:339–347CrossRefGoogle Scholar
  58. Prescott CE, Kishchuk BE, Weetman GF (1995) Long-term effects of repeated nitrogen fertilization and straw application in a jack pine forest. 3. Nitrogen availability in the forest floor. Can J For Res 25:1991–1996Google Scholar
  59. Pretzsch H (1985) Wachstumsmerkmale oberpfälzischer Kiefernbestände in den letzten 30 Jahren. Vitalitätszustand—Strukturverhältnisse—Zuwachsgang. Allg Forst Zeitschr 42:1122–1126Google Scholar
  60. Pretzsch H (2002) Grundlagen der Waldwachstumsforschung. Blackwell, Berlin, Wien, pp 172–195Google Scholar
  61. Preuhsler T, Rehfuess KE (1982) Über die Melioration degradierter Kiefernstandorte (Pinus sylvestris L.) in der Oberpfalz. Forstw Cbl 101:388–407CrossRefGoogle Scholar
  62. Prietzel J (2004) Humusveränderungen nach Einbringung von Buche und Eiche in Kiefernreinbestände. J Plant Nutr Soil Sci 167:428–438CrossRefGoogle Scholar
  63. Prietzel J, Kölling C (1998) Trajectory analysis of long-term changes in the nutritional status of a Scots pine stand. Forstw Cbl 117:137–155CrossRefGoogle Scholar
  64. Prietzel J, Ghidoni M, Kolb E, Rehfuess KE (1996) Nachhaltigkeit der Wirkung von Meliorationsmaßnahmen auf den Säurestatus devastierter Waldböden: Ergebnisse eines Langzeitversuchs in der Oberpfalz. Mitt Dtsch Bodenkundl Ges 79:145–148Google Scholar
  65. Prietzel J, Kolb E, Rehfuess KE (1997) Langzeituntersuchung ehemals streugenutzter Kiefernökosysteme in der Oberpfalz: Veränderungen von bodenchemischen Eigenschaften und der Nährelementversorgung der Bestände. Forstw Cbl 116:269–290Google Scholar
  66. Prietzel J, Wagoner GL, Harrison RB (2004) Long-term effects of repeated urea fertilization in Douglas-fir stands on forest floor nitrogen pools and nitrogen mineralization. For Ecol Manage 193:413–426CrossRefGoogle Scholar
  67. Prietzel J, Stetter U, Klemmt HJ, Rehfuess KE (2006) Recent carbon and nitrogen accumulation and acidification in soils of two Scots pine ecosystems in Southern Germany. Plant Soil 289:153–170CrossRefGoogle Scholar
  68. Rademacher P, Buß B, Müller-Using B (1999) Waldbau und Nährstoffmanagement als integrierte Aufgabe in der Kiefern-Waldwirtschaft auf ärmeren pleistozänen Sanden. Forst Holz 54:330–335Google Scholar
  69. Rehfuess KE, Schmidt A (1971) Die Wirkung von Lupinenunterbau und Kalkammonsalpeterdüngung auf den Ernährungszustand und den Zuwachs älterer Kiefernbestände in der Oberpfalz. Forstw Cbl 90:237–259CrossRefGoogle Scholar
  70. Rehfuess KE, Makeschin F, Völkl J (1984) Amelioration of degraded pine sites (Pinus sylvestris) in Southern Germany. Proc Symp Site productivity fast growing plantations S Afr 2:933–946Google Scholar
  71. Rehfuess KE, Makeschin F, Rodenkirchen H (1991) Results and experience from amelioration trials in Scots pine (Pinus sylvestris L.) forests of Northeastern Bavaria. Fertilizer Res 27:95–105CrossRefGoogle Scholar
  72. Saarsalmi A, Kukkola M, Moilanen M, Arola M (2006) Long-term effects of ash and N fertilization on stand growth, tree nutrient status and soil chemistry in a Scots pine stand. For Ecol Manage 235:116–128CrossRefGoogle Scholar
  73. Spiecker H (1999) Overview of recent growth trends in European forests. Water Air Soil Pollut 116:33–46CrossRefGoogle Scholar
  74. Strader RH, Binkley D (1989) Mineralization and immobilization of soil nitrogen in two Douglas fir stands 15 and 22 years after nitrogen fertilization. Can J For Res 19:798–801Google Scholar
  75. Tamm CO (1991) Nitrogen in terrestrial ecosystems. In: Billings WD, Golley F, Lange OL, Olson JS, Remmert H (eds) Ecological studies 81. Springer, BerlinGoogle Scholar
  76. Tamm CO, Nilsson A, Wiklander G (1974) The optimum nutrition experiment Lisselbo. A brief description of an experiment in a young stand of Scots pine (Pinus sylvestris L.). Royal College Forestry, Dept Forest Ecol Forest Soils, Uppsala, Res Note 18Google Scholar
  77. Tamm CO, Aronsson A, Popovic B (1995) Nitrogen saturation in a long-term forest experiment with annual additions of nitrogen. Water Air Soil Pollut 85:1683–1688CrossRefGoogle Scholar
  78. Ulrich B, Keuffel W (1970) Auswirkungen einer Bestandeskalkung zu Fichte auf den Nährstoffhaushalt des Bodens. Forstarch 41:30–35Google Scholar
  79. Wiedemann E (1943) Ertragstafel für Kiefer. In: Wiedemann E (ed, 1949) Ertragstafel für die wichtigsten Holzarten. Schaper, HannoverGoogle Scholar
  80. Wittich W (1961) Der Einfluß der Baumart auf den Bodenzustand. Allg Forst Zeitschr 16:41–45Google Scholar
  81. Wright RF, Alewell C, Cullen JM, Evans CD, Marchetto A, Moldan F, Prechtel A, Rogora M (2001) Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrol Earth Syst Sci 5:299–310CrossRefGoogle Scholar
  82. Zöttl HW, Kennel R (1962) Die Wirkung der Ammoniakgas- und Stickstoffdüngung in Kiefernbeständen. Forstw Cbl 81:65–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jörg Prietzel
    • 1
  • Karl Eugen Rehfuess
    • 1
  • Ulrich Stetter
    • 2
  • Hans Pretzsch
    • 3
  1. 1.Lehrstuhl für BodenkundeTechnische Universität MünchenFreisingGermany
  2. 2.Bayerische Landesanstalt für Wald und ForstwirtschaftFreisingGermany
  3. 3.Lehrstuhl für WaldwachstumskundeTechnische Universität MünchenFreisingGermany

Personalised recommendations