Advertisement

European Journal of Forest Research

, Volume 126, Issue 4, pp 563–571 | Cite as

Comparison of beta, Johnson’s SB, Weibull and truncated Weibull functions for modeling the diameter distribution of forest stands in Catalonia (north-east of Spain)

  • Marc PalahíEmail author
  • Timo Pukkala
  • Elena Blasco
  • Antoni Trasobares
Original Paper

Abstract

The purpose of this study was to compare the beta, Johnson SB, Weibull and truncated Weibull functions in describing the diameter distributions of forest stands in Catalonia. The data consisted of permanent sample plots from the Spanish National Forest Inventory in Catalonia. The empirical data represent left-truncated distributions, as the smallest diameter measured in the field was 7.5 cm. A total of 1,242 plots were used to fit the functions and analyze their performance. The distribution functions were fitted to the diameter distributions of the number of stems (DDN) and stand basal area (DDG). The performance of the candidate functions was compared by means of their bias and RMSE for different diameter sums measuring the difference between the empirical and fitted distributions. The leftmost part (from 0 to 7.5 cm) of the non-truncated functions was ignored in this analysis. Sensitivity analyses were conducted to check whether the results depended on the number of trees measured in the stand, or the main species of the stand. The truncated Weibull function for the diameter distribution of stand basal area appeared to be in all cases the most accurate and consistent function. Generally, functions describing the distribution of stand basal area performed better than functions that described the distribution of the number of trees. Of the basal area distributions, beta and Johnson’s SB were the second best and nearly equally good with each other. The order of precision of the tested functions was: truncated Weibull for DDG, truncated Weibull for DDN, Johnson’s SB for DDG, beta for DDG, beta for DDN and Weibull for DDG, Weibull for DDN, and Johnson’s SB for DDN.

Keywords

Distribution functions Probability density functions Stand structure 

Notes

Acknowledgments

This study has been conducted within the research project AGL2004-00382 funded by the Ministerio de Educación y Ciencia of Spain, Secretaria de Política Científica y Tecnológica.

References

  1. Álvarez JG (1997) Análisis y caracterización de las distribuciones diamétricas de Pinus pinaster Ait. En Galicia. Tesis Doctoral, ETSIM-UPM, Madrid, 269 ppGoogle Scholar
  2. Anonymous (1997) IMSL. Fortran subroutines for mathematical applications. Visual Nimerics, Inc., Houston, 1311 pGoogle Scholar
  3. Bailey RL, Dell TR (1973) Quantifying diamter distribution with the Weibull-function. For Sci 19(2):97–104Google Scholar
  4. Borders BE, Souter RA, Bailey RL, Ware KD (1987) Percentile-based distributions characterize forest stand tables. For Sci 33:570–576Google Scholar
  5. Cajanus W (1914) Über die Entwicklung gleichaltriger Waldbestände. Eine statistische Studie. I. Acta Forestalia Fenn 3:1–142Google Scholar
  6. Condés Ruiz S (1997) Simulación de parcelas arboladas con datos del segundo inventario forestal nacional. Tesis doctoral, ETSIM-UPM, Madrid, 616 ppGoogle Scholar
  7. Del Rio M (1998) Régimen de claras y modelo de producción para Pinus sylvestris L. en los sistemas Central e Ibérico. Tesis Doctoral, ETSIM-UPM, Madrid, 219 ppGoogle Scholar
  8. Gadow K (1984) Die Erfassung von Durchmesserverteilungen in gleichaltigen Kiefernbeständen. Forstweiss Centralbl 103:369–374Google Scholar
  9. Garcia Güemes C, Cañadas N, Montero G (2002) Modelización de la distribución diamétrica de las masas de Pinus pinea L. de Valladolid (España) mediante la function Weibull. Invest Agr Sist Recur For 11(2):263–282Google Scholar
  10. González JR, Palahí M, Trasobares A, Pukkala T (2006) A fire probability model for forest stands in Catalonia (north-east Spain). Ann For Sci 63:169–176CrossRefGoogle Scholar
  11. Hafley WL, Schreuder HT (1977) Statistical distributions for fitting diameter and height data in even-aged stands. Can J For Res 4:481–487Google Scholar
  12. ICONA (1993a) Segundo Inventario Forestal Nacional (1986–1995). Cataluña: Barcelona, MAPA, MadridGoogle Scholar
  13. ICONA (1993b) Segundo Inventario Forestal Nacional (1986–1995). Cataluña: Girona, MAPA, MadridGoogle Scholar
  14. ICONA (1993c) Segundo Inventario Forestal Nacional (1986–1995). Cataluña: Lleida, MAPA, MadridGoogle Scholar
  15. ICONA (1993d) Segundo Inventario Forestal Nacional (1986–1995). Cataluña: Tarragona, MAPA, MadridGoogle Scholar
  16. Ihalainen M, Salo K, Pukkala T (2003) Empirical prediction models for Vaccinium myrtillus and V. vitis-idaea berry yields in North Karelia, Finland. Silva Fenn 37(1):95–108Google Scholar
  17. Johnson NL (1949) Systems of frequency curves generated by methods of translation. Biometrika 36:149–176PubMedGoogle Scholar
  18. Kangas J (1998) Non-wood forest goods and benefits and the choice of forest management practices. In: Lund HG, Pajari B, Korhonen M (eds) Sustainable development of non-wood goods and benefits from boreal and cold temperate forests. EFI Proceedings, vol 23, pp 203–210Google Scholar
  19. Li F, Zhang L, Davis C (2002) Modelling the joint distribution od tree diameters and heights by bivariate beta distribution. For Sci 48(1):47–58Google Scholar
  20. Loetsch F, Zöhrer F, Haller, K (1973) Forest inventory. Vol. II. BLV Verlagsgesellschaft München, pp 48–58. ISBN 3-405-10812-8Google Scholar
  21. Maltamo M (1997) Comparing basal area diameter distributions estimated by tree species and for the entire growing stock in a mixed stand. Silva Fenn 31(1):53–65Google Scholar
  22. Maltamo M, Puumalainen J, Päivinen R (1995) Comparison of beta and Weibull functions for modelling basal area diameter distribution in stands of Pinus sylvestris and Picea abies. Scand J For Res 10:284–295CrossRefGoogle Scholar
  23. Maltamo M, Kangas A, Uuttera J, Torniainen T, Saramäki J (2000) Comparison of percentile based prediction methods and the Weibull distribution in describing the diameter distribution of heterogeneous Scots pine stands. For Ecol Manage 133:263–274CrossRefGoogle Scholar
  24. Mehtätalo L (2004) An algorithm for ensuring the compatibility between estimated percentiles of diameter distribution and measured stand variables. For Sci 50(1):20–32Google Scholar
  25. Mønness EN (1982) Diameter distributions and height curves in even aged stands of Pinus sylvestris L. Meddeleser fra Norsk Institutt for Skoforskning 36(15):1–43Google Scholar
  26. Päivinen R (1980) On the estimation of stem diameter distribution and stand characteristics (in Finish with English summary). Folia For 442:28 ppGoogle Scholar
  27. Palahí M (2002) Modelling stand development and optimizing the management of even-aged Scots pine forests in north-east Spain. Academic Dissertation. Research notes 143. Faculty of Forestry, University of JoensuuGoogle Scholar
  28. Palahí M, Grau Corbí J (2003) Preliminary site index model and individual-tree growth and mortality models for Black pine (Pinus nigra Arn.) in Catalonia (Spain). Invest Agr Sist Recur For 12(1):137–148Google Scholar
  29. Palahí M, Pukkala T, Miina J, Montero G (2003) Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain. Ann For Sci 60:1–10CrossRefGoogle Scholar
  30. Palahí M, Pukkala T, Pascual L, Trasobares A (2004) Examining alternative landscape metrics in ecological forest landscape planning: a case for capercaillie in Catalonia. Invest Agrarias Sist Recur For 13(3):527–538Google Scholar
  31. Palahí M, Pukkala T, Trasobares A (2006) Modelling the diameter distribution of Pinus sylvesris, Pinus nigra and Pinus halepensis forest stands in Catalonia using the truncated Weibull function. Forestry 79(5):553–562CrossRefGoogle Scholar
  32. Pukkala T (2002) Measuring non-wood forest outputs in numerical forest planning. In: Pukkala T (ed) Multi-objective forest planning. Kluwer, Netherlands, pp 173–207Google Scholar
  33. Rennols K, Geary DN, Rollinson TJD (1985) Characterizing diameter distributions by the use of the Weibull distribution. Forestry 58(1):57–66CrossRefGoogle Scholar
  34. Siipilehto J (1999) Improving the accuracy of predicted basal-area diameter distribution in advanced stands by determining stem number. Silva Fenn 33(4):281–301Google Scholar
  35. Trasobares A (2003) Modelling and management of uneven-aged pine forests in Catalonia, north-east Spain. Academic Dissertation, University of Joensuu, Faculty of Forestry, Research Notes 155Google Scholar
  36. Trasobares A, Pukkala T (2004) Using past growth to improve individual-tree diameter growth models for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann For Sci 61(5):409–417CrossRefGoogle Scholar
  37. Trasobares A, Pukkala T, Miina J (2004a) Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann For Sci 61(1):9–24CrossRefGoogle Scholar
  38. Trasobares A, Tomé M, Miina J (2004b) Growth and yield model for Pinus halepensis Mill. in Catalonia, north-east Spain. For Ecol Manage 203(1):49–62CrossRefGoogle Scholar
  39. Zhang L, Kevin CP, Chuanmin L (2003) A comparison of estimation methods for fitting Weibull and Johnson’s SB distributions to mixed spruce-fir stands in northeastern North America. Can J For Res 33:1340–1347CrossRefGoogle Scholar
  40. Zutter BR, Oderwald RG, Murphy PA, Farrar RM (1986) Characterizing diameter distributions with modified data types and forms of the Weibull distribution. For Sci 32(1):37–48Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Marc Palahí
    • 1
    Email author
  • Timo Pukkala
    • 2
  • Elena Blasco
    • 2
  • Antoni Trasobares
    • 3
  1. 1.Centre Tecnológic Forestal de CatalunyaPasseig Lluis Companys, 23BarcelonaSpain
  2. 2.Faculty of ForestryUniversity of JoensuuJoensuuFinland
  3. 3.Foreco TechnologiesBarcelonaSpain

Personalised recommendations