Advertisement

European Journal of Forest Research

, Volume 125, Issue 3, pp 261–270 | Cite as

Genetic aspects of artificial regeneration of Douglas-fir (Pseudotsuga menziesii) in Bavaria

  • Monika KonnertEmail author
  • Wolfhard Ruetz
Original Paper

Abstract

Douglas-fir has been planted in Bavaria for over 100 years. Its high growth potential and good wood quality combined with its silvicultural characteristics have increased interest in the species which can easily be integrated into existing natural ecosystems. In order to be successful in the establishment of Douglas-fir one must select the best provenance (only the so called “green” or viridis coastal type form is suitable for Bavaria), maintain a broad genetic base and carry out proper silviculture. The goal of the study was to check the origin/provenance (coastal or interior type) of older Bavarian Douglas-fir stands, the respective genetic variation of the stands and also the natural regeneration, the collected seed and the plants raised in the nursery. Possible changes in the genetic composition and diversity due to selective processes in the nursery phase were also investigated. Isoenzyme gene markers were used for the study. The majority of the investigated older stands apparently belong to the coastal type Douglas-fir; however, we also found mixed stands and stands solely of the interior (unsuitable) type. Older stands show large variation in their genetic diversity (vgam between 19.9 and 90.1). Some of the stands of unsuitable provenance have natural regeneration and others have been selected as seed collecting stands. Through natural regeneration the genetic structure of the older stands is passed on to the following generation. The same is true for reproductive material collected from such stands. In comparison to seed collected from stands in the USA (from stands selected by the EU for seed collection), seed from Bavarian stands is genetically very heterogeneous in respect to the allele variants and the diversity. No significant changes in the genetic population structure were found in the nursery due to sowing or transplanting. The critical stage for obtaining high quality reproductive material of Douglas-fir is the selection of seed collecting stands and the harvesting procedure. The resulting consequences for seed collection and procurement of suitable reproductive material for Douglas-fir are discussed.

Keywords

Pseudotsuga menziesii Genetic structure Isozymes Seed stands Nursery practices 

Notes

Acknowledgements

The foregoing study is part of the project “Genetic aspects of natural and artificial regeneration of Douglas-fir”. We would like to thank the Bavarian State Ministry of Agriculture and Forestry for providing funding and support for these investigations.

References

  1. Adams WT, Neale DB, Doerksen AH, Smith DB (1989) Inheritance and linkage of isozyme variants from seed and vegetative tissue in coastal Douglas-fir. Paper No. 2542 of the Forest Res Lab, Oregon State University 89–172Google Scholar
  2. Anonymus (2003) Forstvermehrungsgutgesetz (FoVG) v. 22.05.2002, BGBL 2002 Teil I nr. 32, S 1658Google Scholar
  3. Biermayer G (1999) Fremdenfurcht unangebracht: Fremdländische Baumarten im Bayerischen Staatswald. LWFaktuell 20:4–8Google Scholar
  4. Campbell RK, Sorensen FC (1984) Genetic implications of nursery practices. In: Dureyea ML, Thomas DL (eds) Forest nusery manual:production of bareroot seedlings. Martinus Nijhoff/Dr W Junk Publishers, Oregon State University, Corvallis, pp 183–191CrossRefGoogle Scholar
  5. El-Kassaby YA, Davidson R (1990) Impact of crop management practices on the seed crop genetic quality in a Douglas-fir seed orchard. Silvae Genet 39:230–237Google Scholar
  6. El-Kassaby YA, Thompson AJ (1995) Parental rank changes associated with seed biology and nursery practices in Douglas-fir. For Sci 42(2):228–235Google Scholar
  7. El-Kassaby YA, Yeh FC, Sziklai O (1982) Inheritance of allozyme variants in coastal Douglas-fir. Can J Genetic Cytol 24:325–335CrossRefGoogle Scholar
  8. EU 1999: Richtlinie Nr. 105 über den Verkehr mit forstlichem VermehrungsgutGoogle Scholar
  9. EU 2002: Verordnung Nr. 1597/2002 vom 06.09.2002. Abl. EU Nr. L. 240Google Scholar
  10. Gregorius HR (1974) Genetischer Abstand zwischen Populationen I Zur Konzeption der genetischen Abstandsmessung. Silvae Genet 23:22 –27Google Scholar
  11. Gregorius HR (1978) The concept of genetic diversity and differentiation. Theor Appl Genet 74:397–401CrossRefGoogle Scholar
  12. Gregorius HR, Roberds JH (1986) Measurement of genetic differentiation among subpopulations. Theor Appl Genet 71:826–834CrossRefPubMedGoogle Scholar
  13. Hattemer HH (1991) Measuring genetic variation. In: Müller-Starck G, Ziehe M (eds) Genetic Variation in European Populations of Forest trees. Sauerländer’s Verlag, Frankfurt am Main, pp 2-19Google Scholar
  14. Hoffmann, Ch. 1994: Populationsgenetischer Vergleich von autochthonen Douglasienbeständen mit künstlichen deutschen Douglasienpopulationen. Dissertation, Univ. Göttingen, Forstwissenschaftlicher Fachbereich, 82 SGoogle Scholar
  15. Hoffmann CH, Geburek TH (1995) Allozyme variation of indigeneous Douglas-fir (Pseudotsuga menziesii (Mirb) Franco) populations and their descendants in Germany. Silvae Genet 44:222–225Google Scholar
  16. Kleinschmit J, Bastien JCH (1992) IUFRO’s role in Douglas-fir (Pseudotsuga menziesii) (Mirb) Franco) tree improvement. Silvae Genet 41:161–173Google Scholar
  17. Kleinschmit J, Racz J, Weisgerber H, Dietze W, Dieterich H, Dimpflmeier R (1974) Ergebnisse aus dem internationalen Douglasien-Herkunftsversuch von 1970 in der Bundesrepublik Deutschland. Silvae Genet 23(Heft 6):167–226Google Scholar
  18. Kleinschmit J, Svolba J, Weisgerber H, Rau HM, Dimpflmeier R, Ruetz, W, Franke A (1991) Ergebnisse des IUFRO-Douglasien-Herkunftsversuches in West-Deutschland im Alter 20. Forst und Holz Nr 9:238–241Google Scholar
  19. Klumpp R 1999: Untersuchungen zur Genökologie der Douglasie (Pseudotsuga menziesii (MIRB.) Franco). Dissertation der Fakultät für Forstwissenschaften u. Waldökologie der Universität Göttingen. 290 SGoogle Scholar
  20. Konnert M 2004: Handbücher für Isoenzymanalyse. http://www.genres.de/fgrdeu/blag/iso-handbuecher
  21. Konnert M, Behm A (1999) Genetische Strukturen einer Saatgutpartie – Einflussfaktoren und Einflussmöglichkeiten. Beiträge zur Forstwirtschaft und Landschaftsökologie 33:152–156Google Scholar
  22. Konnert M, Ruetz WF (2003) Influence of nursery practices on the genetic structures of beech (Fagus sylvatica L) seedling populations. For Ecol Manage 184:193–200CrossRefGoogle Scholar
  23. Leinemann L (1996) Genetic differentiation of damaged and healthy Douglas-fir stands in Rheinland-Pfalz with respect to their origin. Silvae Genet 45:250 – 256Google Scholar
  24. Leinemann L (1998) Genetische Untersuchungen an Rassen der Douglasie (Pseudotsuga menziesii) (Mirb) Franco) am Beispiel gesunder und geschädigter Bestände. Göttinger Forstgenetische Berichte Nr 23:146 SGoogle Scholar
  25. Leinemann L, Maurer W (1999) Bedeutung von Isoenzymgenmarkern für den Anbau der Douglasie. AFZ/Der Wald 5:242–243Google Scholar
  26. Li P, Adams WT (1989) Range-wide patterns of allozyme variation in Douglas-fir (Pseudotsuga menziesii). Can J For Res 19:149–161CrossRefGoogle Scholar
  27. Maurer W, Schmitt H-P, Arenhövel W, Bergmann F, Hosius B, Leinemann L (2003) Unterscheidung zwischen der Küsten- und der Inlands-Douglasie anhand genetischer Merkmale. AFZ-DerWald 25:1290–1293Google Scholar
  28. Merkle SA, Adams WT (1987) Patterns of allozyme variation within and among Douglas-fir breeding zones in southwest Oregon. Can J For Res 17:402–407CrossRefGoogle Scholar
  29. Müller-Starck G (1985) Reproductive success of genotypes of Pinus sylvestris L in different environments. In: Gregorius H-R (ed) Population genetics in forestry. Lecture notes in biomathematics, 60:118–133Google Scholar
  30. Olson DL, Silen RR (1975) Influence of date of cone collection on Douglas-fir seed processing and germination: a case history. USDA Forest Service Research Paper PNW-190, 10 pGoogle Scholar
  31. Orr-Ewing AL (1966) Inter- and intraspecific crossing in Douglas-fir, Pseudotsuga menziesii (Mirb) Franco. Silvae Genet 15:121–126Google Scholar
  32. Orr-Ewing AL, Fraser AR, Karlsson I (1972) Interracial crosses with Douglas fir, early field results. Research Notes No. 55, British Columbia Forest Service, 33ppGoogle Scholar
  33. Otto H-J (1987) Skizze eines optimalen Douglasienwaldbaues in Nordwestdeutschland. Der Forst- und Holzwirt 42:515–522Google Scholar
  34. Rehfeldt GE (1977) Growth and cold hardiness of intervarietal hybrids of Douglas-fir. Theor App Genet 50:3–15CrossRefGoogle Scholar
  35. Rohmeder E (1972) Das Saatgut in der Forstwirtschaft. Verlag Paul Parey, Hamburg und Berlin, 273 SGoogle Scholar
  36. Ruetz WF (1981) Douglasien-Herkunftsempfehlungen – ein Vorschlag für Bayern. Allg Forstzeitschrift Nr 41:1074Google Scholar
  37. Ruetz WF (1989) Die Übertragung wissenschaftlicher Erkenntnisse in die Praxis am Beispiel Provenienzforschung bei der Douglasie. AFZ 22/23:563–565Google Scholar
  38. Ruetz WF, Foerst K (1984) Grundsätze für den Anbau der Douglasie in Bayern. Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten, 17 SGoogle Scholar
  39. Schmitt H-P, Maurer W, Arenhövel W, Bergmann F, Hosius B, Leinemann L (2003) Genetische Inventuren in Douglasienbeständen. AFZ-DerWald 25:1287–1289Google Scholar
  40. Schober R (1954) Douglasien Provenienzversuche I. AFJZ 125:160-179Google Scholar
  41. Schober R (1973) Ergebnisse von Douglasien-Provenienzversuchen in Deutschland. Proceedings IUFRO Meeting Working Party on Douglas-fir provenances. Göttingen, 1–13Google Scholar
  42. Silen RR (1962) Pollen dispersal considerations for Douglas-fir. J Forestry 60:790–795Google Scholar
  43. Stauber Th, Hertel H (1999) MacGEN–Populationsgenetik mit SAS. http://www.mol.schuttle.de/wspc/genetik1.htm
  44. Stauffer H, Adams WT (1993) Allozyme variation and mating system of three Douglas-fir stands in Switzerland. Silvae Genet 42:254–258Google Scholar
  45. Stimm B (1995) Experimental plantations of Douglas fir provenances and other conifers at Kaiserslautern established in 1912: results after eight decades of observation. Proceedings IUFRO WP Meeting in Limoges, France, August 01–04, 1995Google Scholar
  46. Wright S (1978) Evolution and the genetics of population vol II. University of Chicago Press, ChicagoGoogle Scholar
  47. Yeh FC, O’Malley D (1980) Enzyme variations in natural populations of Douglas-fir from BCI Genetic variation patterns in coastal populations. Silvae Genet 29:83–92Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Bayerisches Amt für forstliche Saat- und Pflanzenzucht (ASP)TeisendorfGermany

Personalised recommendations