Advertisement

European Journal of Forest Research

, Volume 124, Issue 4, pp 251–260 | Cite as

Concept and feasibility study for the integrated evaluation of environmental monitoring data in forests

  • Sabine AugustinEmail author
  • Jan Evers
  • Hans-Peter Dietrich
  • Johannes Eichhorn
  • Thomas Haussmann
  • Regina Icke
  • Ansgar Isenberg
  • Wolfgang Lux
  • Monica Musio
  • Hans Pretzsch
  • Winfried Riek
  • Thomas Rötzer
  • Bernd Schultze
  • Andreas Schulze
  • Jörg Schröder
  • Walter Seidling
  • Nicole Wellbrock
  • Klaus von Wilpert
  • Barbara Wolff
Original Paper

Abstract

In the 1970s unexpected forest damages, called “new type of forest damage” or “forest decline”, were observed in Germany and other European countries. The Federal Republic of Germany and the German Federal States implemented a forest monitoring system in the early 1980s, in order to monitor and assess the forest condition. Due to the growing public awareness of possible adverse effects of air pollution on forests, in 1985 the ICP Forests was launched under the convention on long-range transboundary air pollution (CLRTAP) of the United Nations Economic Commission for Europe (UN-ECE). The German experience in forest monitoring was a base for the implementation of the European monitoring system. In 2001 the interdisciplinary case study “concept and feasibility study for the integrated evaluation of environmental monitoring data in forests”, funded by the German Federal Ministry of Education and Research, concentrated on in-depths evaluations of the German data of forest monitoring. The objectives of the study were: (a) a reliable assessment of the vitality and functioning of forest ecosystems, (b) the identification and quantification of factors influencing forest vitality, and (c) the clarification of cause-effect-relationships leading to leaf/needle loss. For these purposes additional data from external sources were acquired: climate and deposition, for selected level I plots tree growth data, as well as data on groundwater quality. The results show that in particular time series analysis (crown condition, tree growth, and tree ring analysis), in combination with climate and deposition are valuable and informative, as well as integrated evaluation of soil, tree nutrition and crown condition data. Methods to combine information from the extensive and the intensive monitoring, and to transfer process information to the large scale should be elaborated in future.

Keywords

Environmental monitoring Data management Forest growth Critical loads Regionalization Integrated evaluation Modelling Forest vitality Crown condition 

Notes

Acknowledgements

The study was conducted within the framework of the combined project “Concept and Feasibility study for the Integrated Evaluation of Environmental Monitoring data in Forests” (No. 0339985), founded by the German Ministry for Research and Education. We would like to thank for this financial support. Especially thanks to Dr. R. Loskill, Ms. H. Neumann, and Ms. P. Mahlitz. Associated projects were founded by the Federal Agency for Agriculture and Food (No. 01HS002 and 00HS041), we would like to thank Ms. U. Neumann. We would like to thank Mr. Th. Haußmann, German Ministry for Consumer Protection, for all kind of support in all stages of the project.

References

  1. Augustin S, Schmieden U (1997) Boden-Pflanze-Interaktionen. In: Umweltbundesamt (Hrsg.): “Auswertung der Waldschadensforschungsergebnisse (1982–1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden”, UBA Berichte 6/97Google Scholar
  2. Augustin S, Andreae H (eds) (1998) Cause-effect-interrelations in forest condition—state of knowledge. Study elaborated for the UN/ECE ICP Forests under the auspices of the convention on long-range transboundary air pollution. PCC of ICP Forests, BFH, HamburgGoogle Scholar
  3. Augustin S, Stephanowitz H, Schröder J, Hoffmann E, Wolff B (2005a) Manganese in tree rings of Norway spruce as indicator for soil chemical changes in the past. Euro J For ResGoogle Scholar
  4. Augustin S, Bolte A, Holzhausen M, Wolff B (2005b) The relationships between the exceedance of critical thresholds for nitrogen and sulfur on Level I plots and state parameters of the forest monitoring. Europ J For ResGoogle Scholar
  5. Bolte A, Wolff B, Burkl G, Lehmann R, Kifinger B, Robrecht D, Zahn H (2001) Validierung von Critical Load-Überschreitungen mit Indikatoren des aktuellen Wirkungsgeschehens. Arbeitsbericht Institut für Forstökologie und Walderfassung der Bundesforschungsanstalt für Forst-und Holzwirtschaft 2001/4, Eberswalde, 289 p. (http://www.bfafh.de/bibl/cl.htm)
  6. Butterbach-Bahl K, Stange F, Papen H, Li C (2001) Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast germany using the biogeochemical model PnET-N-DNDC. J Geophys Res 106:34155–34165CrossRefGoogle Scholar
  7. De Vries W, Klap JM, Erisman JW (2000) Effects of environmental stress on forests crown condition in Europe. Part I: hypotheses and approach to the study. Water Air Soil Pollut 119:317–333CrossRefGoogle Scholar
  8. Dittmar C, Zech W (1994) Dendroökologische und ernährungskundliche Untersuchungen an gesunden und kranken Buchen (Fagus sylvatica L.) der nordböhmische Mittelgebirge. Dendrochronologia 12:45–56Google Scholar
  9. Eichhorn J, Schulze E-D, Anders S, Block J, Gravenhorst G, Hartmann G, Hildebrand EE, Hofmann G, Hradetzky J, Kallweit R, Kreutzer K, Matyssek R, Nebe W, Pretzsch H (1998) Stellungnahme und Empfehlung zur Weiterentwicklung der Erhebung des Waldzustands. Bericht der vom Bundesministerium für Ernährung, Landwirtschaft und Forsten eingesetzten Expertengruppe. In: Waldzustandsbericht der Bundesregierung 1997:168–209Google Scholar
  10. Eichhorn J, Icke R, Isenberg A, SchönfelderE (2005) Temporal development of crown condition of beech and oak as response variable for integrated evaluations. Euro J For ResGoogle Scholar
  11. Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung—Ergebnisse des Sollingprojekts. Ulmer-Verlag, StuttgartGoogle Scholar
  12. Evers J, Schulze A (2005) Zur Schlüsselrolle eines integrierten Datenmanagements für die verbesserte Nutzbarmachung von Daten des forstlichen Umweltmonitorings. Zeitschrift für Agrarinformatik 13:9–17Google Scholar
  13. Godbold DL (1998) Stress concepts and forest trees. Chemosphere 36:859–864CrossRefGoogle Scholar
  14. Grinsven HJM van, Driscoll C, Tiktak A (1995) Workshop on comparison of forest soil atmosphere models: preface. Ecol Model 83:1–6CrossRefGoogle Scholar
  15. Hauhs M (1990) Ecosystem modelling: science or technology? J Hydrol 116:25–33CrossRefGoogle Scholar
  16. Hildebrand EE, von Wilpert K, Buberl H (1996) Erkenntnismöglichkeiten in Waldökosystemen im Spannungsfeld zwischen großräumiger Mustererkennung und dem „eisernen Gesetz des Örtlichen”. Allgemeine Forst- u. Jagd-Zeitung 167:174–178Google Scholar
  17. Innes JL (1992) Forest decline. Prog Phys Geogr 16:1–64CrossRefGoogle Scholar
  18. Lorenz M (1995) 10 Jahre ICP Forests—Von der Kronenzustandserhebung zum intensiven Monitoring. Allgemeine Forstzeitschrift/Der Wald 50:1094–1096Google Scholar
  19. Lükewille A, Jeffries D, Johannessen M, Raddum G, Stoddard J, Traaen T (1997) The nine year report: Acidification of surface water in Europe and North America—Long-term developments (1980s and 1990s). Norwegian Institute for Water Research. ISBN 82-577-3195-1. 168 pGoogle Scholar
  20. Magill AH, Aber JD, Currie WS, Nadelhoffer KS, Martin ME, McDowell WH, Melillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage 196:7–28CrossRefGoogle Scholar
  21. Manion PD (1981) Tree disease concepts. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  22. Matschullat J, Heinrichs H, Schneider J, Ulrich B (1994) Gefahr für Ökosysteme und Gewässer.—Ergebnisse interdisziplinärer Forschung im Harz. Springer-Verlag, Berlin, p 478Google Scholar
  23. Matzner E (1988) Der Stoffumsatz zweier Waldökosysteme im Solling. Berichte des Forschungszentrums Waldökosysteme/Waldsterben, Reihe A, Bd. 40Google Scholar
  24. Meesenburg H, Dammann I, Evers J, Schulze A, Rademacher P, Mindrup M, König N, Fortmann H, Eberl C, Meiwes K-J (2002) Forstliches Umweltmonitoring als Entscheidungshilfe für die Forstwirtschaft und Umweltpolitik. Forst und Holz 57:707–712Google Scholar
  25. Müller-Edzard C, DeVries W, Erisman JW (eds) (1997) Ten years of monitoring forest condition in Europe. EC-UN/ECE, Brussels, Geneva. 386p. ISBN 3-926301-00-7Google Scholar
  26. Musio M, Wilpert K von, Augustin N (2006) Crown condition as a function of soil, site and tree characteristics. Euro J For Res, submittedGoogle Scholar
  27. Nadelhoffer KJ, Emmett BA, Gundersen P, Kjönaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148CrossRefGoogle Scholar
  28. Nellemann C, Thomsen MG (2001) Long-term changes in forest growth: potential effects of nitrogen deposition and acidification. Water Air Soil Pollut 128:197–205CrossRefGoogle Scholar
  29. NML (2004) Waldzustand 2004—Ergebnisse der Waldzustandserhebung. Herausgegeben von: Niedersächsisches Ministerium für den ländlichen Raum, Ernährung, Landwirtschaft und VerbraucherschutzGoogle Scholar
  30. O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton, NJ, p 253Google Scholar
  31. Overrein LN, Seip HM, Tollan A (1980) Acid precipitation—effects on forest and fish. Final report of the SNSF Project 1972–1980. Oslo, AsGoogle Scholar
  32. Paar U, Kirchhoff A, Westphal J, Eichhorn J (2000) Die Fruktifikation der Buche in Hessen. Allgemeine Forstzeitschrift 55:1362–1363Google Scholar
  33. Rötzer T, Grote R, Pretzsch H (2005) Effects of environmental changes on the vitality of forest stands. Euro J For ResGoogle Scholar
  34. Schröder J, Riek W (2005) Bundesweite Aufbereitung, Ergänzung und integrierende Auswertung von Daten des Umweltmonitoring im Wald. Final report of the BMBF project (No. 0339985): Concept and feasibility study for the integrated evaluation of environmental monitoring data in forests (IFOM)Google Scholar
  35. Schultze B, Kennel M, Preuhssler T, Hammel K (2050 Modellierung der Dynamik des Wasser- und Stoffhaushaltes. Final report of the BMBF project (No. 0339985): Concept and feasibility study for the integrated evaluation of environmental monitoring data in forests (IFOM), May 2005Google Scholar
  36. Schulze E-D (1989) Air pollution and forest decline in a spruce (Picea abies L.) forest. Science 244:776–783PubMedCrossRefGoogle Scholar
  37. Seidling W (2004) Crown condition within integrated evaluations of Level II monitoring data at the German level. Euro J For Res 123:63–74Google Scholar
  38. Spiecker H, Mielikäinen K, Köhl M, Skovsgaard J (eds) (1996) Growth trends in European Forests—Studies from 12 countries. European Forest Institute Research Report No. 5. Springer, 372pGoogle Scholar
  39. Ulrich B, Mayer R, Khanna PK (1979) Deposition von Luftverunreinigungen und ihre Auswirkungen in Waldökosystemen im Solling. Schriften der Forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt, Bd. 58, 291pGoogle Scholar
  40. Ulrich B (1989) Effects of acidic precipitation on forest ecosystems in Europe. In: Adriano DC, Johnson AH (eds) Acid precipitation. Springer-Verlag, Berlin 2:189–272Google Scholar
  41. Ulrich B (1994) Ökosystemare Grundlagen—Stoffhaushalt von Waldökosystemen und Gewässerqualität. p1–19. In: Matschullat J, Heinrichs H, Schneider J, Ulrich B (eds) Gefahr für Ökosysteme und Gewässer.—Ergebnisse interdisziplinärer Forschung im Harz. Springer-Verlag, Berlin, p 478Google Scholar
  42. Utschig H (1989) Waldwachstumskundliche Untersuchungen im Zusammenhang mit Waldschäden. Auswertungen der Zuwachstrendanalyseflächen des Lehrstuhles für Waldwachstumskunde für die Fichte (Picea abies (L.) Karst.) in Bayern. Forstliche Forschungsberichte München 97, 198pGoogle Scholar
  43. Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD (2004) Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. For Ecol Manage 196:129–142CrossRefGoogle Scholar
  44. Webster KL, Creed LF, Nicholas NS, Miegroet H van (2004) Exploring interactions between pollutant emissions and climatic variability in growth of red spruce in the great smoky mountains national park. Water Air Soil Pollut 159:225–248CrossRefGoogle Scholar
  45. Wellbrock N, Riek W, Wolff B (2002) Integrierende Auswertung bundesweiter Waldzustandsdaten. Arbeitsbericht Nr. 2002/1:112pGoogle Scholar
  46. Wellbrock N, Kies U, Riek W, Wolff B (2004) Methodenentwicklung zur Ableitung von Maßnahmeempfehlungen für Waldzustandstypen. Abschlussbericht zum Forschungsauftrag 01HS002, Maßnahmeempfehlungen für Waldzustandstypen unter variierenden Umweltbedingungen—Modellrechnungen und Szenarien auf der Grundlage des bundesweiten Forstlichen Monitorings. Fachhochschule Eberswalde, in Kooperation mit der BFH Hamburg, 120pGoogle Scholar
  47. Wellbrock N, Riek W, Wolff B (2005) Characterisation and changes of the atmospheric deposition situation in German forest ecosystems using multivariate statistics. Euro J For ResGoogle Scholar
  48. Wolff B, Riek W (1997) Deutscher Waldbodenbericht 1996—Ergebnisse der bundesweiten Bodenzustandserhebung im Wald (BZE) 1987–1993. Bundesministerium für Ernährung Landwirtschaft und Forsten, 2 volsGoogle Scholar
  49. Wolff B (2002) Daten von gestern für Fragen von heute und Entscheidungen morgen? Beiträge für Forstwirtschaft und Landschaftsökologie 36:97–102Google Scholar
  50. Wright RF, Roelofs JGM, Bredemeier M, Blanck K, Boxman AW, Emmett BA, Gundersen P, Hultberg H, Kjonaas OJ, Moldan F, Tietema A, Van Breemen N, Van Dijk HFG (1995) Nitrex—responses of coniferous forest ecosystems to experimentally changed deposition of nitrogen. For Ecol Manage 71:163–169CrossRefGoogle Scholar
  51. Zirlewagen D (2003) Regionalisierung bodenchemischer Eigenschaften in topographisch stark gegliederten Waldlandschaften. Freiburger Forstliche Forschung, Bd. 19, 154pGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Sabine Augustin
    • 1
    Email author
  • Jan Evers
    • 2
  • Hans-Peter Dietrich
    • 8
  • Johannes Eichhorn
    • 3
  • Thomas Haussmann
    • 4
  • Regina Icke
    • 3
  • Ansgar Isenberg
    • 3
  • Wolfgang Lux
    • 2
  • Monica Musio
    • 5
  • Hans Pretzsch
    • 6
  • Winfried Riek
    • 7
  • Thomas Rötzer
    • 6
  • Bernd Schultze
    • 8
  • Andreas Schulze
    • 9
  • Jörg Schröder
    • 7
  • Walter Seidling
    • 7
  • Nicole Wellbrock
    • 2
  • Klaus von Wilpert
    • 10
  • Barbara Wolff
    • 7
  1. 1.Federal Environmental AgencyDessauGermany
  2. 2.Institute for Forest Ecology and Forest ManagementFederal Research Centre for Forestry and Forest ProductsEberswaldeGermany
  3. 3.HessenForstHannoversch-MündenGermany
  4. 4.Food and AgricultureFederal Ministry of Consumer ProtectionBonnGermany
  5. 5.Freiburg Center for Data Analysis and Modeling (FDM)FreiburgGermany
  6. 6.Chair of Forest Yield ScienceTechnische Universität MünchenFreisingGermany
  7. 7.University of Applied Sciences EberswaldeEberswaldeGermany
  8. 8.Bavarian State Institute of ForestryFreisingGermany
  9. 9.Forest Research Station of Lower SaxonyGöttingenGermany
  10. 10.Forest Research Centre Baden-WuerttembergFreiburgGermany

Personalised recommendations