European Journal of Forest Research

, Volume 124, Issue 4, pp 319–333 | Cite as

Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review

  • Matthias DobbertinEmail author


The intensive monitoring plots (Level II) of ICP Forests serve to examine the effects of air pollution and other stress factors on forest condition, including tree vitality. However, tree vitality cannot be measured directly. Indicators, such as tree growth or crown transparency, may instead be used.

Tree growth processes can be ranked by order of importance in foliage growth, root growth, bud growth, storage tissue growth, stem growth, growth of defence compounds and reproductive growth. Under stress photosynthesis is reduced and carbon allocation is altered. Stem growth may be reduced early on as it is not directly vital to the tree.

Actual growth must be compared against a reference growth, such as the growth of trees without the presumed stress, the growth of presumed healthy trees, the growth in a presumed stress-free period or the expected growth derived from models.

Several examples from intensive monitoring plots in Switzerland illustrate how tree-growth reactions to environmental stresses may serve as vitality indicator. Crown transparency and growth can complement each other. For example, defoliation by insects becomes first visible in crown transparency while stem growth reaction occurs with delay. On the other hand, extreme summer drought as observed in large parts of Europe in 2003 affects stem growth almost immediately, while foliage reduction becomes only visible months later.

Residuals of tree growth models may also serve as indicators of changed environmental conditions. Certain stresses, such as drought or insect defoliation cause immediate reactions and are not detectable in five-year growth intervals. Therefore, annual or inter-annual stem growth should be assessed in long-term monitoring plots.


Tree growth Vitality Crown transparency Stress factors Drought. 



The Swiss Long-Term Forest Ecosystem Research (LWF) is part of the Swiss Forest Investigation Programme conducted by the Swiss Federal Institute of Forest, Snow and Landscape Research WSL in co-operation with the Swiss Federal Forest Administration. Many thanks to the various field teams and that have assessed the trees on the LWF plots, to Christian Hug for coordinating the fieldwork, to Michèle Kaennel Dobbertin and to the anonymous reviewers for helpful editorial comments.


  1. Abeles AL, Abeles FB (1972) Biochemical Pathway of stress-induced ethylene. Plant Physiol 50:496–498PubMedCrossRefGoogle Scholar
  2. American Heritage College Dictionary (1993) 3rd ed., Houghton Millton Company, Boston, New YorkGoogle Scholar
  3. Baier P, Fuhrer E, Kirisits T, Rosner S (2002) Defence reactions of Norway spruce against bark beetles and the associated fungus Ceratocystis polonica in secondary pure and mixed species stands. For Ecol Manage 159:73–86CrossRefGoogle Scholar
  4. Baltensweiler W (1975) Zur Bedeutung des grauen Lärchenwicklers (Zeiraphera diniana Gn.) für die Lebensgemeinschaft des Lärchen-Arvenwaldes. Mitt Schweiz Entomolog Ges 50:15–23Google Scholar
  5. Baltensweiler W (1993) Why the larch bud-moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850. Oecologia 1:62–66CrossRefGoogle Scholar
  6. Baltensweiler W, Rubli D (1999) Dispersal: an important driving force of the cyclic population dynamics of the larch bud moth, Zeiraphera diniana Gn. For Snow Landsc Res 74:3–153Google Scholar
  7. Bayerische Landesanstalt für Wald und Forstwirtschaft (2004) Waldzustandsbericht 2004. Bayerisches Staatsministerium für Landwirtschaft und Forsten, Bayerische Landesanstalt für Wald und Forstwirtschaft LWFGoogle Scholar
  8. Becker M, Bräker OU, Kenk G, Schneider O, Schweingruber FH (1990) Kronenzustand und Wachstum von Waldbäumen im Dreiländereck Deutschland-Frankreich-Schweiz in den letzten Jahrenzehnten. Allg Forstz 45:263–266, 272–274Google Scholar
  9. Biging GS, Dobbertin M (1995) Evaluation of competition indices in individual-tree growth models. For Sci 41:360–377Google Scholar
  10. Biging GS, Dobbertin M (1992) A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For Sci 38:695–720Google Scholar
  11. Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2005) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems (in press)Google Scholar
  12. Bigler C, Bugmann H (2003) Growth-dependent tree mortality models based on tree rings. Can J For Res 33:210–221CrossRefGoogle Scholar
  13. Bigler C, Bugmann H (2004) Predicting the time of tree death using dendrochronological data. Ecol Appl 14:902–914Google Scholar
  14. Bigler C, Gricar J, Bugmann H, Cufar K (2004) Growth patterns as indicators of impending tree death in silver fir. For Ecol Manage 199:183–190Google Scholar
  15. Björkdahl G, Eriksson H (1989) Effects of crown decline on increment in Norway spruce (Picea abies (L.) Karst) in Southern Sweden. In: Brække H, Bjor K, Halvorsen B (eds) Air pollution as stress factor in the Nordic forests. Communications of the Norwegian Forest Research 42:19–36Google Scholar
  16. Bossel H (1986) Dynamics of forest dieback: systems analysis and simulation. Ecol Model 34:259–288CrossRefGoogle Scholar
  17. Brang P (eds) (1998) Sanasilva-Bericht 1997. Gesundheit und Gefährdung des Schweizer Waldes - eine Zwischenbilanz nach 15 Jahren Waldschadenforschung. Berichte der Eidg. Forschungsanstalt für Wald, Schnee und Landschaft, BirmensdorfGoogle Scholar
  18. Broadmeadow MSJ, Jackson SB (2000) Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytologist 146:437–451CrossRefGoogle Scholar
  19. Brunner I, Brodbeck S, Walthert L (2002) Fine root chemistry, starch concentration, and ‘vitality’ of subalpine conifer forests in relation to soil pH. For Ecol Manage 165:75–84CrossRefGoogle Scholar
  20. Burkman W.G, Hertel GD (1992) Forest Health Monitoring – A national program to detect, evaluate, and understand change. J For 90:27–28Google Scholar
  21. Calder M, Bernhardt P (eds) (1983) The Biology of Mistletoes, Academic Press, Sydney New York London Paris San Diego San Francisco Sao Paolo Tokyo TorontoGoogle Scholar
  22. Ceulemans R, Jach ME, Van de Velde R, Lin JX, Stevens M (2002) Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L) after three years of enrichment. Glob Chang Biol 8:153–162CrossRefGoogle Scholar
  23. Cherubini P, Fontana G, Rigling D, Dobbertin M, Brang P, Innes JL (2002) Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. J Ecol 90:839–850CrossRefGoogle Scholar
  24. Clemenssonlindell A, Persson H (1995a) Fine-root vitality in a Norway spruce stand subjected to various nutrient supplies. Plant Soil 169:167–172Google Scholar
  25. Clemenssonlindell A, Persson H (1995b) The effects of nitrogen addition and removal on Norway spruce fine-root vitality and distribution in 3 catchment areas at Gardsjon. For Ecol Manage 71:123–131CrossRefGoogle Scholar
  26. de Vries W, Vel E, Reinds GJ, Deelstra H, Klap JM, Leeters EEJM, Hendriks CMA, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman JW (2003a) Intensive monitoring of forest ecosystems in Europe - 1. Objectives, set-up and evaluation strategy. For Ecol Manage 174:77–95CrossRefGoogle Scholar
  27. de Vries W, Reinds GJ, Vel E (2003b) Intensive monitoring of forest ecosystems in Europe-2: Atmospheric deposition and its impacts on soil solution chemistry. For Ecol Manage 174:97–115CrossRefGoogle Scholar
  28. de Vries W, Reinds GJ, Posch M, Sanz MJ, Kruase GHM, Calatayud V, Renaud JP, Dupouey JL, Sterba H, Vel, EM, Dobbertin M, Gundersen P, Voogd JCH (2003c) Intensive Monitoring of Forest Ecosystems in Europe, Technical Report 2003 ,UN/ECE and EC Forest Intensive Monitoring Coordinating Institute, Geneva, BrusselsGoogle Scholar
  29. de Vries W, Klap JM, Erisman JW (2000) Effects of environmental stress on forest crown condition in Europe. Part I: Hypotheses and approach to the study. Water Air Soil Poll 119:317–333CrossRefGoogle Scholar
  30. Dobbertin M (ed) (2004) Estimation of Growth and Yield. In: UNECE, Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Federal Research Centre for Forestry and Forest Products, HamburgGoogle Scholar
  31. Dobbertin M (2002) Influence of stand structure and site factors on wind damage - Comparing the storms “Vivian” and “Lothar”. For Snow Landsc Res 77:187–205Google Scholar
  32. Dobbertin M (2000) Forest Growth. In: Haußmann T, Lorenz M, Fischer R (eds). Internal Review of ICP Forests. UN/ECE, 2000, Fed. Res. Centre for Forestry and Forest Products pp 84–102Google Scholar
  33. Dobbertin M (1996) Relationship between basal area increment, tree crown defoliation, and tree and site variables. In: Proceedings, IUFRO Conference on Effects of environmental factors on tree and stand growth, Berggiesshübel near Dresden, September 23–27, 1996. Dresden, Technische Universität, pp. 33–44Google Scholar
  34. Dobbertin M, Baltensweiler A, Rigling D (2001) Tree mortality in a mountain pine (Pinus mugo var. uncinata) stand in the Swiss National Park impacted by root rot fungi. For Ecol Manage 145:79–89CrossRefGoogle Scholar
  35. Dobbertin M, Biging GS (1998) Using the non-parametric classifier CART to model forest tree mortality. For Sci 44:507–516Google Scholar
  36. Dobbertin M, Brang P (2001) Crown defoliation improves tree mortality models. For Ecol Manage 141:271–284CrossRefGoogle Scholar
  37. Dobbertin M, Hilker N, Rebetez M, Wohlgemuth T, Zimmermann NE, Rigling A (2005) The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland – a result of climate warming? Int J Biometeorol 50:40–47CrossRefPubMedGoogle Scholar
  38. Dobbertin M, Landmann G, Pierrat JC, Müller-Edzards C (1997) Quality of crown condition data. In: Müller-Edzards C, De Vries W, Erisman JW (eds), Ten years of monitoring forest condition in Europe. Studies on temporal development, spatial distribution and impacts of natural and anthropogenic stress factors. Technical background report. Geneva and Brussels, United Nations Economic Commission for Europe / European Commission pp. 7–22Google Scholar
  39. Dong PH, Kramer H (1987) Zuwachsverlust in erkrankten Fichtenbeständen. Allg Forst- Jagdztg 158:122–125Google Scholar
  40. Dursky J (1997) Modelling mortality in mixed spruce-beech stands. Allg Forst- Jagdztg 168:131–134Google Scholar
  41. Eckmüllner O, Halbwachs G, Schön B, Sterba H (1988) Vergleich von verschiedenen objektiv bestimmten Benadelungsmerkmalen und Schadklassenansprache bei Fichte. In: Führer E, Neuhuber F (eds) Waldsterben in Österreich: Theorien, Tendenzen, Therapien. FIW-Symposium, Wien, pp 259–260Google Scholar
  42. Eckmüllner O, Sterba H (2000) Crown condition, needle mass, and sapwood area relationships of Norway spruce (Picea abies). Can J For Res 30:1646–1656CrossRefGoogle Scholar
  43. EFI (2002) Nitrogen deposition appears to be the main cause of increased forest growth in Europe. Press ReleaseGoogle Scholar
  44. Eichhorn J, Szepesi A, Ferretti M, Durrant D, Roskams P (2004), Visual Assessment of Crown Condition. In: UN/ECE, Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Federal Research Centre for Forestry and Forest Products, HamburgGoogle Scholar
  45. Eichkorn T (1986) Wachstumsanalysen an Fichten in Südwestdeutschland. Allg Forst- Jagdztg 157:125–139Google Scholar
  46. Ellenberg H (1994) Blatt- und Nadelverlust oder standörtlich wechselnde Ausbildung des Photosynthese-Apparats? Fragen zum Waldschadenbericht 1992. Schweiz. Z. Forstwes. 145:413–416Google Scholar
  47. Filip GM, Wickman BE, Mason RR, Parks CA, Hosman KP (1992) Thinning and nitrogen-fertilization in a grand fir stand infested with western spruce budworm. 3. Tree wound dynamics. For Sci 38:265–274Google Scholar
  48. Fischer JT (1983) Water relations of Mistletoes and their hosts. In: Calder M, Bernhard T (eds) The biology of Mistletoes. Academic Press, Sydney, pp 163–184Google Scholar
  49. Flückiger W, Braun S (1995) Revitalization of an alpine protective forest by fertilization. Plant Soil 169:481–488Google Scholar
  50. Gehrig M (2004) Methoden zur Vitalitätsbeurteilung von Bäumen. Vergleichende Untersuchungen mit visuellen, nadelanalytischen und bioelektrischen Verfahren. Diss. No. 15341, ETH ZürichGoogle Scholar
  51. Goldstein AH, Gensler W (1981) A physiological basis for electrophytograms. Bioelectrochemistry Bioenergetics 8:645–659CrossRefGoogle Scholar
  52. Grill D, Tausz M, Pollinger U, Jimenez MS, Morales D (2004) Effects of drought on needle anatomy of Pinus canariensis. Flora 199:85–89Google Scholar
  53. Hall JP (1995) Forest health monitoring in Canada: how healthy is the boreal forest? Water Air Soil Pollut 82:77–85CrossRefGoogle Scholar
  54. Hattenschwiler S, Miglietta F, Raschi A, Korner C (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Glob Chang Biol 3:463–471CrossRefGoogle Scholar
  55. Innes JL (1993) Forest health: its assessment and status. Wallingford, Oxon, UK: CAB InternationalGoogle Scholar
  56. Janssens IA, Medlyn B, Gielen B, Laureysens I, Jach ME, Van Hove D, Ceulemans R (2005) Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration. Tree Physiol 25:325–337PubMedGoogle Scholar
  57. Jolly M, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent growth responses of Alpine forests to 2003 heat wave. Geophys Res Lett 32, L18409, doi:10.1029/2005GL023252Google Scholar
  58. Jonsson AM, Rosengren U, Nihlgard B (2004) Excess nitrogen affects the frost sensitivity of the inner bark of Norway spruce. Ann For Sci 61:293–298CrossRefGoogle Scholar
  59. Joos K, (1997) Untersuchung der Zusammenhänge zwischen Nadeldichte, Zuwachsleistung und Nährstoffversorgung bei der Fichte unter besonderer Berücksichtigung des Ionentransportes im Splintsaft. Diss. ETH, No. 12117, ETH ZürichGoogle Scholar
  60. Juknys R, Stravinskiene V, Venecloviene J (2002) Tree-ring analysis for the assessment of anthropogenic changes and trends. Environ Monit Assess 77:81–97CrossRefPubMedGoogle Scholar
  61. Kahle, HP (2005) Impacts of the drought and heat 2003 on forest growth. Submitted to Ann For SciGoogle Scholar
  62. Kenk G (1983) Zuwachsuntersuchungen in geschädigten Tannenbeständen in Baden-Württemberg. Allg Forstztg 38:650–652Google Scholar
  63. Klap JM, Voshaar JHO, De Vries W, Erisman JW (2000) Effects of environmental stress on forest crown condition in Europe. Part IV: Statistical analysis of relationships.Water Air Soil Poll 119:387–420CrossRefGoogle Scholar
  64. König A (1995) Sturmgefährdung von Beständen im Altersklassenwald. Ein Erklärungs- und Prognosemodell. Diss. Univ. München, Sauerländer’s Verl., Frankfurt am MainGoogle Scholar
  65. Kozlov MV, Niemela P (1999). Difference in needle length - A new and objective indicator of pollution impact on Scots pine (Pinus sylvestris). Water Air Soil Pollut 116:365–370CrossRefGoogle Scholar
  66. Kozlowski TT, Pallardy SG (1996) Physiology of woody plants. 2nd edn. Academic Press, San DiegoGoogle Scholar
  67. Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334Google Scholar
  68. Kramer H, Dong PH (1985) Kronenanalyse für Zuwachsuntersuchungen in immissionsgeschädigten Nadelholzbeständen. Forst- Holzwirt 40:115–118Google Scholar
  69. Krause C, Gionest F, Morin H, MacLean DA (2003) Temporal relations between defoliation caused by spruce budworm (Choristoneura fumiferana Clem.) and growth of balsam fir (Abies balsamea (L.) Mill.). Dendrochronologia 21:23–31CrossRefGoogle Scholar
  70. Kucera LJ (1986) Kernspintomographie und elektrische Widerstandsmessung als Diagnosemethode der Vitalität erkrankter Bäume. Schweiz Z Forstwes 137:673–690Google Scholar
  71. Kulman HM (1971) Effects of insect defoliation on growth and mortality of trees. Annual Rev Entomol 16:289–324CrossRefGoogle Scholar
  72. Larcher W (2001) Ökophysiologyie der Pflanzen. Ulmer Verlag, Stuttgart, 6. AuflageGoogle Scholar
  73. Lewinsohn E, Gijzen M, Croteau R (1991) Defense-mechanisms of conifers. Differences in constitutive and wound-induced monoterpene biosynthesis among species. Plant Physiol. 96:44–49PubMedGoogle Scholar
  74. Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. J Plant Physiol 148:4–14Google Scholar
  75. Lof M, Welander NT (2000) Carry-over effects on growth and transpiration in Fagus sylvatica seedlings after drought at various stages of development. Can J For Res 30:468–475CrossRefGoogle Scholar
  76. Lorenz M, Becher G, Mues V, Fischer R, Ulrich E, Dobbertin M, Stofer S (2004) Forest Condition in Europe – 2004 Technical Report. UN/ECE, GenevaGoogle Scholar
  77. Lorenz M, Eckstein D (1988) Wachstumsreaktionen von Einzelbäumen in Douglasien-, Fichten- und Kiefernbeständen in norddeutschen Waldschadensgebieten. Forst- Holz 43:8–12Google Scholar
  78. Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage 196:7–28CrossRefGoogle Scholar
  79. Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997) Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol Appl 7:402–415Google Scholar
  80. Maguire DA, Kanaskie A (2002) The ratio of live crown length to sapwood area as a measure of crown sparseness. For Sci 48:93–100Google Scholar
  81. Manion PD (1981) Tree disease concepts. Englewood Cliffs, Prentice Hall, New Jersey, USAGoogle Scholar
  82. Meining S, Schröter H, v. Wilpert K (2004) Waldzustandsbericht 2004. Forstliche Versuchs- und Forschungsanstalt Baden-WürttembergGoogle Scholar
  83. Merriam-Webtser’s Collegiate Dictionary (1994) 10th. Ed. Merriam-Webtser, Incorporated, Springfield, Massachusetts, USAGoogle Scholar
  84. Mitscherlich G (1978) Wald, Wachstum und Umwelt, vol. 1. J.D. Sauerländer’s Verlag, Frankfurt am Main, 2nd edGoogle Scholar
  85. Monserud RA, Sterba H (1999) Modeling individual tree mortality for Austrian forest species. For Ecol Manage 113:109–123CrossRefGoogle Scholar
  86. Monserud RA, Sterba H (1996) A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For Ecol Manage 80:57–80CrossRefGoogle Scholar
  87. Müller-Edzards C, De Vries W, Erisman JW (eds) (1997) Ten Years of Monitoring Forest Condition in Europe. Studies on Temporal Development, Spatial Distribution and Impacts of Natural and Anthropogenic Stress Factors. UN/ECE, ICP Forests, Technical Background Report. Brussels, GenevaGoogle Scholar
  88. Neumann M, Stemberger A (1990) Über Ausmass und Verteilung der Mortalität: Gegenüberstellung von Ergebnissen der Waldzustandsinventur mit früheren Untersuchungen. Forstwiss Centralbl 107:63–99Google Scholar
  89. Nötzli KP, Müller B, Sieber TN (2003) Impact of population dynamics of white mistletoe (Viscum album ssp. abietis) on European silver fir (Abies alba). Ann For Sci 60:773–779CrossRefGoogle Scholar
  90. Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng WX, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW (2002) Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol Appl 12:1261–1266Google Scholar
  91. Pedersen BS. (1998a) Modelling tree mortality in response to short- and long-term environmental stresses. Ecol Modelling 105:347–351CrossRefGoogle Scholar
  92. Pedersen BS. (1998b) The role of stress in the mortality of Midwestern oaks as indicated by growth prior to death. Ecology 79:79–93CrossRefGoogle Scholar
  93. Persson H, Ahlstrom K (2002) Fine-root response to nitrogen supply in nitrogen manipulated Norway spruce catchment areas. For Ecol Manage 168:29–41CrossRefGoogle Scholar
  94. Pretzsch H (1985) Wachstumsmerkmale Oberpfälzer Kiefernbestände in den letzten 30 Jahren. Vitalitätszustand, Strukturverhältnisse - Zuwachsgang. Allg Forstztg 42:1122–1126Google Scholar
  95. Pretzsch H (1992) Zunehmende Unstimmigkeit zwischen erwartetem und wirklichem Wachstum unserer Waldbestände. Forstwiss Centralbl. 111:366–382Google Scholar
  96. Proe MF, Dutch J, Miller HG, Sutherland J (1992) Long-term partitioning of biomass and nitrogen following application of nitrogen-fertilizer to Corsican pine. Can J For Res 22:82–87CrossRefGoogle Scholar
  97. Raison RJ, Myers BJ, Benson ML (1992) Dynamics of Pinus radiata foliage in relation to water and nitrogen Stress. 1. Needle production and properties. For Ecol Manage 52:139–158CrossRefGoogle Scholar
  98. Random House Webster’s College Dictionary (1992), Random House, New YorkGoogle Scholar
  99. Rasmussen L, Beier C, Bergstedt A (2002) Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climate. For Ecol Manage 158:179–188CrossRefGoogle Scholar
  100. Riikonen J, Lindsberg MM, Holopainen T, Oksanen E, Lappi J, Peltonen P, Vapaavuori E (2004) Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiol 24:1227–1237PubMedGoogle Scholar
  101. Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9CrossRefGoogle Scholar
  102. Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121CrossRefGoogle Scholar
  103. Rigling A, Brühlhart H, Bräker OU, Forster T, Schweingruber FH (2003) Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland. For Ecol Manage 175:285–296CrossRefGoogle Scholar
  104. Rolland C, Baltensweiler W, Petitcolas V (2001) The potential for using Larix decidua ring widths in reconstructions of larch budmoth (Zeiraphera diniana) outbreak history: dendrochronological estimates compared with insect surveys. Trees 15:414–424CrossRefGoogle Scholar
  105. Roloff A (1987) Morphology of crown development of Fagus sylvatica L. (beech) in consideration of new modifications. 1. Morphogenetic cycle, abnormalities specific to proleptic shoots and leaf fall. Flora 179:355–378Google Scholar
  106. Rosso P, Hansen E (1998) Tree vigour and the susceptibility of Douglas fir to Armillaria root. Eur J For Pathol 28:43–52Google Scholar
  107. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefPubMedGoogle Scholar
  108. Schmid-Haas P (1993) Kronenverlichtung und Sterberaten bei Fichten, Tannen und Buchen. Forstwiss Centralbl 112:325–333Google Scholar
  109. Schmid-Haas P, Baumann E, Holdenrieder O, Keller W, Ramp B, Sepien E (1997) Infektionen der Stützwurzeln, Kronenverlichtung und Zuwachs bei Fichten und Tannen. Mitt. Eidg. Forschungsanstalt WSL 72, BirmensdorfGoogle Scholar
  110. Schmidt W, Schneckenburger H (1992) Time-resolving luminescence techniques for possible detection of forest decline: I. Long term delayed luminescence. Radiation and Environ Biophys 31:63–72CrossRefGoogle Scholar
  111. Schöpfer W, Hradetzky J (1986) Zuwachsrückgang in erkrankten Fichten- und Tannenbeständen - Auswertungsmethoden und Ergebnisse. Forstwiss Centralbl 105:446–470Google Scholar
  112. Schöpfer W, Hradetzky J, Kublin E (1997) Wachstumsvergleiche von Fichte und Tanne in Baden-Württemberg. Forst- Holz 52:443–448Google Scholar
  113. Schweingruber FH (1996) Tree rings and environment. Paul Haupt, BernGoogle Scholar
  114. Shigo AL (1990) Die neue Baumbiologie. Bernhard Thalacker Verlag, BraunschweigGoogle Scholar
  115. Solberg S (2004) Summer drought: a driver for crown condition and mortality of Norway spruce in Norway. For Pathol 34:93–104Google Scholar
  116. Solberg S (1999) Crown condition and growth relationships within stands of Picea abies. Scand J For Res 14:320–327Google Scholar
  117. Solberg S, Andreassen K, Clarke N, Torseth K, Tveito OE, Strand GH, Tomter S, (2004) The possible influence of nitrogen and acid deposition on forest growth in Norway. For Eco Manage 192:241–249CrossRefGoogle Scholar
  118. Solberg S, Strand L (1999) Crown density assessments, control surveys and reproducibility. Environ Monit Assess 56:75–86CrossRefGoogle Scholar
  119. Solberg S, Tveite B (2000) Crown density and growth relationships between stands of Picea abies in Norway. Scand J For Res 15:87–96Google Scholar
  120. Spelsberg G (1988) Zur Frage der Wachstumsdifferenzierung bei vorherrschenden Fichten unter besonderer Berücksichtigung der Waldschäden. Forst- Holz 43:538–542Google Scholar
  121. Spelsberg G, Teske H, Graner M, Suntrup U (1995) Hohes Zuwachsniveau der Fichte in Nordrhein-Westfalen. AFZ 50:1097–1098Google Scholar
  122. Spiecker H (1995) Growth dynamics in a changing environment - Long-term observations. Plant Soil 169:555–561Google Scholar
  123. Spiecker H (1990) Growth variation and environmental stresses - Long-term observations on permanent research plots in southwestern Germany.Water Air Soil Poll 54:247–256CrossRefGoogle Scholar
  124. Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth Trends in European Forests. EFI Res. Rep. 5. Springer, BerlinGoogle Scholar
  125. Spinnler D, Egli P, Korner C (2003) Provenance effects and allometry in beech and spruce under elevated CO2 and nitrogen on two different forest soils. Basic And Applied Ecology 4:467–478CrossRefGoogle Scholar
  126. Spitzbart G, Sterba H (2004) Application of the Tree Growth Model PrognEU to the Level II –plots of the European Forest Damage Monitoring Programme. Internal reportGoogle Scholar
  127. Standovar T, Somogyi Z (1998) Corresponding patterns of site quality, decline and tree growth in a sessile oak stand. Eur J For Pathol 28:133–144Google Scholar
  128. Stefan K, Fürst A, Hacker R, Bartels U (1997) Forest Foliar Condition in Europe. Results of the large-scale foliar chemistry surveys (survey 1995 and data from previous years), Austrian Federal Forest Research Centre, EC, UN/ECE, Vienna Brussels GenevaGoogle Scholar
  129. Sterba H, Eckmüllner O (1988) Nadelverlust - Zuwachsrückgang: doch eine Beziehung. Österr Forstztg 10:52–53Google Scholar
  130. Steyrer G (1996) Auswahl und Prüfung von Zuwachsparametern als Waldzustandsindikatoren - Einfluss des Kronenzustandes auf den Zuwachs. FBVA-Berichte / Forstliche Bundesversuchsanstalt Wien (Neumann M (ed), Österreichisches Waldschaden-Beobachtungssystem) 96: 121–135Google Scholar
  131. Strand GH (1996) Detection of observer bias in ongoing forest health monitoring programmes. Can J For Res 26:1692–1696Google Scholar
  132. Swetnam TW, Lynch AM (1993) Multicentury, regional-scale patterns of western spruce budworm outbreaks. Ecol Monogr 63:399–424Google Scholar
  133. Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytologist 146:59–74CrossRefGoogle Scholar
  134. Tveite B, Abrahamsen G, Stuanes AO (1990) Liming and wet acid deposition effects on tree growth and nutrition - Experimental results. Water Air Soil Poll 54:409–422CrossRefGoogle Scholar
  135. Van der Eerden L, De Vries W, Van Dobben H (1998) Effects of ammonia deposition on forests in the Netherlands. Atmospheric Environment 32:525–532CrossRefGoogle Scholar
  136. Wargo PM, Minocha R, Wong BL, Long RP, Horsley SB, Hall TJ (2002) Measuring changes in stress and vitality indicators in limed sugar maple on the Allegheny Plateau in north-central Pennsylvania. Can J For Res 32:629–641CrossRefGoogle Scholar
  137. Waring RH (1987) Characteristics of trees predisposed to die. BioScience 37:569–573Google Scholar
  138. Waring RH, Newman K, Bell J (1981) Efficiency of tree crowns and stemwood production at different canopy leaf densities. Forestry 54:129–137Google Scholar
  139. Waring RH, Savage T, Cromack K, Rose C (1992) Thinning and nitrogen-fertilization in a grand fir stand infested with western spruce budworm. 4. An ecosystem management perspective. For Sci 38:275–286Google Scholar
  140. Waring RH, Thies WG, Muscato D (1980) Stem growth per unit of leaf area: a measure of tree vigor. For Sci 26:112–117Google Scholar
  141. Weber UM (1997) Dendroecological reconstruction and interpretation of Larch bud moth (Zeiraphera diniana) outbreaks in two central Alpine valleys of Switzerland from 1470–1990. Trees 11:277–290Google Scholar
  142. Weetman GF, Prescott CE, Kohlberger FL, Fournier RM (1997) Ten-year growth response of coastal Douglas-fir on Vancouver Island to N and S fertilization in an optimum nutrition trial. Can J For Res 27:1478–1482CrossRefGoogle Scholar
  143. Wulff S (2002) The Accuracy of Forest Damage Assessments – Experiences from Sweden. Environ Monit Assess 74:295–309CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Environmental Sciences, Policy and Management University of California, BerkeleyBerkeleyUSA

Personalised recommendations