European Journal of Forest Research

, Volume 124, Issue 2, pp 83–86

In-situ application of stable isotope tracers in the rhizosphere of an oak seedling

  • A. Göttlein
  • A. Heim
  • A. J. Kuhn
  • W. H. Schröder
Original Paper


In a controlled rhizotrone experiment, stable isotope tracers of Mg, Ca and K were applied directly to the rhizosphere of an oak seedling using a 2D-array of micro ceramic cups. Before starting isotope application the oak root induced a significant reduction of K+, Ca2+, Mg2+ and NO3 in the soil solution of the rhizosphere, as well as an increase of Al3+. The effect of adding stable isotopes in the soil (soil solution and exchangeable cations) was mainly restricted to a distance of about 1 cm from the point of application. All stable isotopes were taken up by the oak seedling, especially Ca which according to leaf analysis was in the range of insufficiency. As expected, Ca showed low mobility in the phloem, resulting in a low percentage of label in the root tip as compared to other root segments. Our experiment proved, that in-situ application is an easy to handle tool for carrying out tracer studies in real soil.


  1. van den Burg J (1985) Foliar analysis for determination of tree nutrient status—a compilation of literature data. Institute for Forestry and Urban Ecology, WageningenGoogle Scholar
  2. van den Burg J (1990) Foliar analysis for determination of tree nutrient status—a compilation of literature data 1985–1989. Institute for Forestry and Urban Ecology, WageningenGoogle Scholar
  3. Chung HH, Kramer PJ (1975) Absorption of water and 32P through suberized and unsuberized roots of Loblolly Pine. Can J For Res 5:229–235Google Scholar
  4. Claassen N, Hendriks L, Jungk A (1981) Erfassung der Mineralstoffverteilung im wurzelnahen Boden durch Autoradiographie. Z Pflanzenernähr Bodenk 144:306–316Google Scholar
  5. Comerford NB, Smethurst PJ, Escamilla JA (1994) Nutrient uptake by woody root systems. New Zealand J Forest Sci 24:195–212Google Scholar
  6. Dieffenbach A, Göttlein A, Matzner E (1997) In-situ soil solution chemistry in an acid forest soil as influenced by growing roots of Norway spruce (Picea abies [L.] Karst.). Plant Soil 192:57–61Google Scholar
  7. Göttlein A, Blasek R (1996) Analysis of small volumes of soil solution by capillary electrophoresis. Soil Sci 161:705–715Google Scholar
  8. Göttlein A, Hell U, Blasek R (1996) A system for microscale tensiometry and lysimetry. Geoderma 69:147–156Google Scholar
  9. Göttlein A, Heim A, Matzner E (1999) Mobilization of aluminium in the rhizosphere soil solution of growing tree roots in an acidic soil. Plant Soil 211:41–49Google Scholar
  10. Häussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz C, Marschner H (1988) Ion and water uptake in relation to root development in Norway spruce (Picea abies (L.) Karst.). J Plant Physiol 133:486–491Google Scholar
  11. Kirlew PW, Bouldin DR (1987) Chemical properties of the rhizosphere of an acid subsoil. Soil Sci Soc Am J 51:128–132Google Scholar
  12. Kuchenbuch R, Claassen N, Jungk A (1986) Potassium availability in relation to soil moisture II. Calculations by means of a mathematical simulation model. Plant Soil 95:233–243Google Scholar
  13. Kuhn AJ, Bauch J, Schröder WH (1995) Monitoring uptake and contents of Mg, Ca, K in Norway spruce as influenced by pH and Al, using microprobe analysis and stable isotope labelling. Plant Soil 168–169:135–150Google Scholar
  14. Kuhn AJ, Schröder WH, Bauch J (2000) The kinetics of calcium and magnesium entry into mycorrhized spruce roots. Planta 210:488–496Google Scholar
  15. Larcher W (1994) Ökophysiologie der Pflanzen, 5th edn. Ulmer Verlag, StuttgartGoogle Scholar
  16. Manderscheid B, Göttlein A (eds) (1995) Wassereinzugsgebiet ’Lehstenbach’ - das BITÖK-Untersuchungsgebiet am Waldstein (Fichtelgebirge, NO-Bayern). Bayreuther Forum Ökologie, vol. 18, University of BayreuthGoogle Scholar
  17. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  18. Nye PH, Marriott FHC (1969) A theoretical study of the distribution of substances around roots resulting from simultaneous diffusion and mass flow. Plant Soil 30:459–472Google Scholar
  19. Schachtschabel P, Blume HP, Hartge KH, Renger M (1982) Lehrbuch der Bodenkunde, 11th edn. Enke Verlag, StuttgartGoogle Scholar
  20. Schaller G, Fischer WR (1985) pH-Änderungen in der Rhizosphäre von Mais- und Erdnußwurzeln. Z Pflanzenernähr Bodenk 148:306–320Google Scholar
  21. STMELF (1987) Grundsätze für die Düngung im Wald. Bayerisches Staatsministerium für Ernährung Landwirtschaft und Forsten. MünchenGoogle Scholar
  22. Wang Z, Göttlein A, Bartonek G (2001) Effects of growing roots of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) on rhizosphere soil solution. J Plant Nutr Soil Sci 164:35–41Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. Göttlein
    • 1
  • A. Heim
    • 2
  • A. J. Kuhn
    • 3
  • W. H. Schröder
    • 3
  1. 1.Fachgebiet Waldernährung und WasserhaushaltTechnische Universität MünchenFreisingGermany
  2. 2.Geographisches Institut, Physische GeographieUniversität ZürichZürichSwitzerland
  3. 3.Institut Phytosphäre (ICG-III)Forschungszentrum JülichJülichGermany

Personalised recommendations