Advertisement

European Journal of Forest Research

, Volume 124, Issue 2, pp 125–131 | Cite as

Derivation of locally valid estimators of the aboveground biomass of Norway spruce

  • Markus Neumann
  • Robert JandlEmail author
Original Paper

Abstract

The carbon (C) stocks of forests are usually calculated from inventory-based estimates of the stem volume, tree-species-specific wood densities, biomass expansion factors (BEF) and functions for the mass of branches and needles/leaves, and the C concentration. However, reported BEFs in the literature are inconsistent, and especially the reliability of the C stock estimates for young stands is unknown. We describe an efficient method for deriving locally valid functions in order to estimate the aboveground biomass of young Norway spruce (Picea abies Karst.) stands. Data were collected from two adjacent stands, representing the treatment ‘Control’ and ‘Fertilized’ of an amelioration experiment. The stem volume was derived from Mass Tables as a function of diameter and height and was converted to stem mass with a species-specific conversion factor. Subsamples of branches from different positions within the canopy were selected by probability proportional to size (PPS) sampling. Needles and branches were weighed separately. The obtained expansion functions for branch and needle biomass have dbh as the only input variable and are accurate (0.88<R2<0.96). Earlier published allometric functions carried a considerable bias, especially when applied for young stands. We found that differences in soil fertility do not alter the ratio between the masses of stems, branches, and needles. Regionally derived biomass expansion functions can be used for sites with different soil fertility, can greatly improve the estimate of the aboveground biomass, and can be generated with a modest effort of field and laboratory work.

Keywords

Aboveground biomass Biomass expansion factor Biomass expansion function Norway spruce PPS sampling 

List of Symbols

BFj

Blow-up factor for quartile j

dbh

Stem diameter at breast height (cm)

dbi

Diameter of branch i (cm)

dc

Stem diameter at the base of the canopy (cm)

hc

Height of the base of the canopy (m)

hbi

Height of branch i above the ground (m)

i

Index for branch number

j

Index for quartile of canopy

m

Stem mass (kg)

mbi

Fresh mass of branch i (kg)

mb

Total fresh mass of branch of tree (kg)

mni

Needle dry mass of branch i (kg)

mnj

Needle dry mass of branches in quartile j of the canopy (kg)

mn

Total needle dry mass of individual tree (kg)

mwi

Wood dry mass of branch i (kg)

mwj

Wood dry mass of branches in quartile j of the canopy (kg)

mw

Wood dry mass of branch of individual tree (kg)

RAN

Random number

sap

Sap wood area (cm2)

V

Stem volume (m3)

Notes

Acknowledgements

We thank A Stemberger, E Stanz and G Krzemien for the able field work. A part of this paper was presented at the COST E-21 meeting on ‘Biomass Expansion Factors’, held July 4–5, 2002 in Besalú, Spain.

References

  1. Böswald K, Rumberg M, Schulte A (2000) Die Forstwirtschaft in der internationalen Klimapolitik. Forst Holz 21:691–696Google Scholar
  2. Briggs E, Cunia T (1982) Effect of cluster sampling in biomass tables construction: linear regression models. Can J Forest Res 12:255–263Google Scholar
  3. Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116:363–372Google Scholar
  4. Bundesholzwirtschaftsrat (1985) Österreichische Holzhandelsusancen 1973. Verlag der Wiener Börsenkammer, Wien, 1985 editionGoogle Scholar
  5. Burger H (1953) Holz, Blattmenge und Zuwachs. Mitteilungen der schweizerischen Anstalt für das forstliche Versuchswesen XXIX:38–130Google Scholar
  6. Droste zu Hülshoff Bv (1970) Struktur, Biomasse und Zuwachs eines älteren Fichtenbestandes. Forstwissenschaftliches Centralblatt 89:162–171Google Scholar
  7. Eckmüllner O, Sterba H (2000) Crown condition, needle mass, and sapwood area relationships of Norway spruce (Picea abies). Can J Forest Res 30:1646–1654Google Scholar
  8. Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung - Ergebnisse des Sollingprojektes 1966–1986. Eugen Ulmer, StuttgartGoogle Scholar
  9. Englisch M (1987) Versauerung von Waldböden durch Entnahme von Biomasse bei der Holzernte (Fichte) – Untersuchung der Auswirkungen verschiedener Nutzungsarten auf 17 österreichischen Standorten. Diplomarbeit, Universität für Bodenkultur, ViennaGoogle Scholar
  10. Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:1157–11520Google Scholar
  11. Gaffrey D, Saborowski J (1999) RBS, ein mehrstufiges Inventurverfahren zur Schätzung von Baummerkmalen. Allgemeine Forst Jagdzeitung 170:177–183Google Scholar
  12. Gholz H, Grier C, Campbell A, Brown A (1979) Equations for estimating biomass and leaf area of plants in the pacific northwest. Technical Report 41, Oregon State University, Forest Research LabGoogle Scholar
  13. Hager H, Sterba H (1985) Specific leaf area and needle weight of Norway spruce (picea abies) in stands of different densities. Can J Forest Res 15:389–392Google Scholar
  14. Jandl R, Starlinger F, Englisch M, Herzberger E, Johann E (2002) Long-term effect of a forest amelioration experiment. Can J Forest Res 32:120–128Google Scholar
  15. Jenkins J, Chojnacky D, Heath L, Birdsey R (2003) National-scale biomass estimators for United States tree species. Forest Sci 49:12–35Google Scholar
  16. Johann K (1968) Grösse und Verteilung des Zuwachses in Verjüngungsbeständen der Fichte. PhD Thesis, Universität, MünchenGoogle Scholar
  17. Johann K (1989) Sanfter Waldbau mit Chemie – ein Düngungs- und Meliorationsversuch zu Kiefer. ÖFZ 245:23–44Google Scholar
  18. Johnson EW (1972) Basic 3-P sampling. Departmental Series 5, Agricultural Experiment Station, Auburn University, Auburn, AlabamaGoogle Scholar
  19. Krapfenbauer A, Buchleitner E (1981) Holzernte, Biomassen- und Nährstoffaustrag, Nährstoffbilanz eines Fichtenbestandes. Centralblatt für das gesamte Forstwesen 98:193–223Google Scholar
  20. Marklund LG (1987) Biomass functions for Norway spruce (Picea abies L. Karst.) in Sweden. Technical Report 43, Department of Forest Survey, Swedish University of Agricultural SciencesGoogle Scholar
  21. Marklund LG (1988) Biomass functions for pine, spruce and birch in Sweden. Technical Report 45, Dept of Forest Survey, Swedish Univ Agric SciencesGoogle Scholar
  22. Pollanschütz J (1974) Formzahlfunktionen der Hauptbaumarten Österreichs. Informationsdienst der FBVA 153:341–343Google Scholar
  23. Pollanschütz J (1976) Schaftholzvolumstabellen der Hauptbaumarten Österreichs. Informationsdienst der FBVA 164:1–2Google Scholar
  24. Raisch W (1983) Bioelementverteilung in Fichtenökosystemen der Bärhalde (Südschwarzwald). Freiburger Bodenkundliche Abhandlungen 11:1–239Google Scholar
  25. Schöne D, Schulte A (1999) Forstwirtschaft nach Kyoto: Ansätze zur Quantifizierung und betrieblichen Nutzung von Kohlenstoffsenken. Forstarchiv 70:167–176Google Scholar
  26. Schreuder HT, Sedransk J, Ware KD (1968) 3-P sampling and some alternatives, I. Forest Sci 14:429–454Google Scholar
  27. Schreuder HT, Sedransk J, Ware KD, Hamilton DA (1971) 3-P sampling and some alternatives, II. Forest Sci 17:103–118Google Scholar
  28. Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form—the pipe model theory. Jpn J Ecol 14:97–105;133–139Google Scholar
  29. Valentine HT, Hilton SJ (1977) Sampling oak foliage by the randomized-branch method. Can J Forest Res 7:295–298Google Scholar
  30. Valentine HT, Tritton LM, Furnival GM (1984) Subsampling trees for biomass, volume, or mineral content. Forest Sci 30:673–681Google Scholar
  31. Valentine HT, Baldwin VC Jr, Gregoire TG, Burkhardt HE (1994) Surrogates for foliar dry matter in loblolly pine. Forest Sci 40:576–585Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Austrian Federal Office and Research Centre for ForestsViennaAustria
  2. 2.Department of Forest Growth and Economics   

Personalised recommendations