Advertisement

European Journal of Forest Research

, Volume 124, Issue 1, pp 1–8 | Cite as

The carbon budget of an adult Pinus cembra tree at the alpine timberline in the Central Austrian Alps

  • Gerhard Wieser
  • Thomas Gigele
  • Hans Pausch
Original Paper

Abstract

We investigated carbon (C) uptake and respiratory losses of an adult Pinus cembra tree at the alpine timberline throughout an entire year by means of an automated, multiplexing gas exchange system. These chamber measurements were then combined with biomass data for scaling up the C budget to the tree level. Integrated over an entire year, the cumulative C gain of the tree under study was 23.5 kg of C in 2002. The daily C balance was negative for 5 months and the estimated total wintertime respiratory losses were 9% of the amount of C fixed during the growing season. The total annual C loss of the tree consumed 55% of the annual net C gain and the remaining surplus was stored in new tissues (36%) and used for fine root growth (9%). Thus, the overall C budget of P. cembra at the upper timberline is balanced fairly well, although the C sink strength in fine roots is strongly limited owing to low root zone temperatures when compared to conifers at lower elevation sites.

Keywords

Pinus cembra Net carbon gain Respiration Carbon balance Carbon allocation Alpine timberline 

References

  1. Benecke U, Nordmeyer AH (1982) Carbon uptake and allocation by Nothofagus solandri var. cliffortoides (hook. F.) Poole and Pinus contorta Douglas ex Loundon ssp contorta at montane and subalpine altitudes. In: Waring RH (ed) Carbon uptake and allocation in subalpine ecosystems as a key to management. Proceedings of an IUFRO Workshop, Forest Research Laboratory, Oregon State University, Corvallis, pp 9–21Google Scholar
  2. Bernoulli M, Körner Ch (1999) Dry matter allocation in treeline trees. Phyton 39:7–12Google Scholar
  3. Boysen-Jensen P (1932) Die Stoffproduktion der Pflanzen. Fischer, JenaGoogle Scholar
  4. Cairns DM (1998) Modelling controls on pattern at alpine treeline. Geogr Environ Model 2:43–64Google Scholar
  5. Cairns DM, Malanson GP (1998) Environmental variables influencing the carbon balance at the alpine treeline: a model approach. J Vegetat Sci 9:697–692Google Scholar
  6. Cartellieri E (1935) Jahresgang von osmotischem Wert, Transpiration und Assimilation einiger Ericaceen der alpinen Zwergstrauchheide und von Pinus cembra. J Wissen Botanik 82:460–506Google Scholar
  7. Gower ST, Iserbrands JG, Sherrif DW (1995) Carbon allocation and accumulation in conifers. In: Smith WJ, Hinckley TM (eds) Resource physiology of conifers: acquisition, allocation and utilisation. Academic, San Diego, pp 217–254Google Scholar
  8. Häsler R, Savi C, Herzog K (1991) Photosynthese und stomatäre Leitfähigkeit der Fichte unter dem Einfluss von Witterung und Luftschadstoffen. In: Stark M (ed) Luftschadstoffe und wald. Verlag der Fachvereine, Zürich, pp 143–168Google Scholar
  9. Häsler R, Streule A, Turner H (1999) Shoot and root growth of young Larix decidua in contrasting environments near the alpine timberline. Phyton 39:47–52Google Scholar
  10. Hättenschwiler S, Handa IT, Egli L, Asshoff R, Ammann W, Körner Ch (2002) Atmospheric CO2 enrichment of alpine treeline conifers. New Phytolog 156:363–375Google Scholar
  11. Havranek WM (1981) Stammatmung, Dickenwachstum und Photosynthese einer Zirbe (Pinus cembra) an der Waldgrenze. Mitteilungen Forstlichen Bundesversuchsanstalt Wien 142:443–467Google Scholar
  12. Havranek WM, Tranquillini W (1995) Physiological processes during winter dormancy and their ecological significance. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic, San Diego, pp 95–124Google Scholar
  13. Kimura M. Monotiani I, Hogsetu K (1968) Ecological and physiological studies on the vegetation of Mt. Shimagare. VI. Growth and dry matter production of young Abies stand. Botan Mag Tokyo 81:287–296Google Scholar
  14. Körner Ch (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Larcher W (2001) Ökophysiologie der Pflanzen: Leben, Leistung und Stressbewältigung der Pflanzen in ihrer Umwelt. Ulmer, Stuttgart, pp 408Google Scholar
  16. Linder S, Axelsson. B (1982) Changes in carbon uptake and allocation patterns as a result of irrigation and fertilization in a young Pinus sylvestris stand. In: Waring RH (ed) Carbon uptake and allocation in subalpine ecosystems as a key to management proceedings of an IUFRO Workshop, Forest Research Laboratory, Oregon State University, Corvallis, pp 38–44Google Scholar
  17. Linder S, Troeng E (1981) The seasonal variation in stem and coarse root respiration of a 20-year-old scots pine (Pinus sylvestris L.). Mitteilungen Forstlichen Bundesversuchsanstalt Wien 142:125–139Google Scholar
  18. Matyssek R, Schulze E-D (1988) Carbon uptake and respiration in above-ground parts of a Larix decidua x leptolepis tree. Trees 2:233–241Google Scholar
  19. Oswald H (1963) Verteilung und Zuwachs der Zirbe (Pinus cembra L.) der subalpinen Stufe an einem zentralalpinen Standort. Mitteilungen Forstlichen Bundes-Versuchsanstalt Mariabrunn 60:437–499Google Scholar
  20. Peters J (2001) Ecophysiologia del pino canario. PhD Dissertation University La Laguna, pp 257Google Scholar
  21. Pisek A, Winkler E (1958) Assimilationsvermögen und Respiration der Fichte (Picea excelsa LINK) in verschiedenen Höhenlagen und der Zirbe (P inus cembra L.) an der alpinen Waldgrenze. Planta 51:518–543Google Scholar
  22. Rayment MB, Jarvis PG (1999) Seasonal variation in carbon accumulation by a high latitude forest ecosystem. Phyton 39:165–174Google Scholar
  23. Schinner F, Niederbacher R, Rainer J (1989) Enzymaktivitäten und CO2-Freisetzung von Bodenmaterialien entlang einem Höhentransekt in den Hohen Tauern. In: Carnusca A (ed) Struktur und Funktion von Graslandökosystemen im Nationalpark Hohe Tauern. Veröffentlichungen des österreichischen MaB-Programms 13, Universitätsverlag Wagner, Innsbruck, pp 239–247Google Scholar
  24. Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus sylvatica L.) in Abhängigkeit von Klimafaktoren im Freiland. Flora 159:177–232Google Scholar
  25. Schulze E.-D, Fuchs M, Fuchs MI (1977) Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest on northern Germany. I. Biomass distribution and daily CO2 uptake in different crown layers. Oecologia 29:42–61Google Scholar
  26. Sprugel DG, Ryan MR, Brooks JR, Vogt KA, Martin TA (1995) Respiration from the organ level to the stand. In: Smith WJ, Hinckley TM (eds) Resource physiology of conifers: acquisition, allocation and utilisation. Academic, San Diego, pp 255–299Google Scholar
  27. Stecher G, Schwienbacher F, Mayr S, Bauer H (1999) Effects of winter-stress on photosynthesis and antioxidants of exposed and shaded needles of Picea abies (L.) Karst. and Pinus cembra L. Phyton 39:205–212Google Scholar
  28. Stevens GC, Fox JF (1991) The cause of treelines. Annu Rev Ecol Syst 22:177–191Google Scholar
  29. Thompson FB, Leyton L (1971) Method for measuring the leaf surface area of complex shoots. Nature 299:572Google Scholar
  30. Tranquillini W (1959a) Die Stoffproduktion der Zirbe (Pinus cembra) an der Waldgrenze während eines Jahres. I. Standortklima und CO2-Assimilation. Planta 54:107–129Google Scholar
  31. Tranquillini W (1959b) Die Stoffproduktion der Zirbe (Pinus cembra) an der Waldgrenze während eines Jahres. II. Zuwachs und CO2-Bilanz. Planta 54:130–151Google Scholar
  32. Tranquillini W (1962) Beitrag zur Kausalanalyse des Wettbewerbs ökologisch verschiedener Holzarten. Berichte deutschen botanischen Gesell 75:353–364Google Scholar
  33. Tranquillini W (1979) Physiological ecology of the alpine timberline. Ecological studies Vol 31. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. Tranquillini W, Schütt W (1970) Über die Rindenatmung einiger Bäume an der Waldgrenze. Centralblatt Gesamte Forstwesen 87:42–60Google Scholar
  35. Troeng E, Linder S (1982a) Gas exchange of scots pine. I. Net photosynthesis of current and one-year-old shoots within and between seasons. Physiol Plant 54:7–14Google Scholar
  36. Troeng E, Linder S (1982b) Gas exchange of scots pine. II. Variation in net photosynthesis and transpiration between trees. Physiol Plant 54:15–23Google Scholar
  37. Turner W, Streule A (1983) Wurzelwachstum und Sprossentwicklung junger Koniferen im Klimastress an der alpinen Waldgrenze, mit Berücksichtigung von Mikroklima, Photosynthese und Stoffproduktion. In: Wurzelökologie und ihre Nutzanwendung, International Symposium Gumpenstein 1982, Bundesanstalt Gumpenstein, Irdning. pp 617–635Google Scholar
  38. Wieser G (1997) Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol 17:473–477Google Scholar
  39. Wieser G (2004a) Environmental control of carbon dioxide gas exchange in needles of a mature Pinus cemra tree at the alpine timberline during the growing season. Phyton 44:145–153Google Scholar
  40. Wieser G (2004b) Seasonal variation of soil respiration in a Pinus cembra forest at the upper timberline in the Central Austrian Alps. Tree Physiol 24:475–480Google Scholar
  41. Wieser G, Bahn M (2004) Seasonal and spatial variation in woody-tissue respiration in a Pinus cembra tree at the alpine timberline in the Central Austrian Alps. Trees 18:576–580Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Bundesamt und Forschungszentrum für WaldAbt. ForstpflanzenphysiologieInnsbruckAustria

Personalised recommendations